2,235 research outputs found

    Joint channel pairing and power allocation optimization in two-way multichannel relaying.

    Get PDF
    We consider two-way amplify-and-forward relaying in a multichannel system with two end nodes and a single relay, using a two-slot multi-access broadcast (MABC) as well as time-division broadcast (TDBC) relaying strategies. We investigate the problem of joint subchannel pairing and power allocation to maximize the achievable sum-rate in the network, under an individual power budget at each node. To solve this challenging joint optimization problem, an iterative approach is proposed to decompose the problem into pairing optimization and joint power allocation optimization, and solve them iteratively. For given power allocation, we first consider the problem of subchannel pairing at the relay to maximize the achievable sum rate in TDBC-based network. Unlike in the one-way relaying case, our result shows that there exists no explicit SNR-based subchannel pairing strategy that is optimal for sum-rate maximization for two-way relaying. Nonetheless, for TDBC-based two way relaying, we formulate the pairing optimization as an axial 3-D assignment problem which is NP-hard, and propose an iterative optimization method to solve it with complexity O(N3). Based on SNR over each subchannel, we also propose sorting-based algorithms for scenarios with and without direct link, with a low complexity of O(N logN). For the joint power allocation at the relay and the two end nodes, we propose another iterative optimization procedure to optimize the power at the two end nodes and at the relay iteratively. By using different forms of optimization parameters, the sum-rate maximization problem turns out to be convex and the optimal solutions can be obtained for each subproblem. The simulation first demonstrates the proposed sorting-based pairing algorithm offers the performance very close to the iterative optimization method. Then, shows the gain of joint optimization approach over other pairing-only or power-allocation-only optimization approaches

    Joint power allocation for MIMO-OFDM full-duplex relaying communications

    Full text link
    © 2017, The Author(s). In this paper, we address the problem of joint power allocation in a two-hop MIMO-OFDM network, where two full-duplex users communicate with each other via an amplify-and-forward relay. We consider a general model in which the full-duplex relay can forward the received message in either one-way or two-way mode. Our aim is to maximize the instantaneous end-to-end total throughput, subject to (i) the separate sum-power constraints at individual nodes or (ii) the joint sum-power constraint of the whole network. The formulated problems are large-scale nonconvex optimization problems, for which efficient and optimal solutions are currently not available. Using the successive convex approximation approach, we develop novel iterative algorithms of extremely low complexity which are especially suitable for large-scale computation. In each iteration, a simple closed-form solution is derived for the approximated convex program. The proposed algorithms guarantee to converge to at least a local optimum of the nonconvex problems. Numerical results verify that the devised solutions converge quickly, and that our optimal power allocation schemes significantly improve the throughput of MIMO-OFDM full-duplex one-way/two-way relaying over the conventional half-duplex relaying strategy

    Power Control and Beamforming Design for SWIPT in AF Two-Way Relay Networks

    Get PDF
    In this paper, we study the problem of joint power control and beamforming design for simultaneous wireless information and power transfer (SWIPT) in an amplify-and-forward (AF) based two-way relaying (TWR) network. The considered system model consists of two source nodes and a relay node. Two single-antenna source nodes receive information and energy simultaneously via power splitting (PS) from the signals sent by a multi-antenna relay node. Our objective is to maximize the weighted sum power at the two source nodes subject to quality of service (QoS) constraints and the transmit power constraints. However, the joint optimization of the relay beamforming matrix, the source transmit power and PS ratio is intractable. To find a closed-form solution of the formulated problem, we decouple the primal problem into two subproblems. In the first problem, we intend to optimize the beamforming vectors for given transmit powers and PS ratio. In the second subproblem, we optimize the remaining parameters with obtained beamformers. It is worth noting that although the corresponding subproblem are nonconvex, the optimal solution of each subproblem can be found by using certain techniques. The iterative optimization algorithm finally converges. Simulation results verify the effectiveness of the proposed joint design

    Sum-Rate Maximization in Two-Way AF MIMO Relaying: Polynomial Time Solutions to a Class of DC Programming Problems

    Full text link
    Sum-rate maximization in two-way amplify-and-forward (AF) multiple-input multiple-output (MIMO) relaying belongs to the class of difference-of-convex functions (DC) programming problems. DC programming problems occur as well in other signal processing applications and are typically solved using different modifications of the branch-and-bound method. This method, however, does not have any polynomial time complexity guarantees. In this paper, we show that a class of DC programming problems, to which the sum-rate maximization in two-way MIMO relaying belongs, can be solved very efficiently in polynomial time, and develop two algorithms. The objective function of the problem is represented as a product of quadratic ratios and parameterized so that its convex part (versus the concave part) contains only one (or two) optimization variables. One of the algorithms is called POlynomial-Time DC (POTDC) and is based on semi-definite programming (SDP) relaxation, linearization, and an iterative search over a single parameter. The other algorithm is called RAte-maximization via Generalized EigenvectorS (RAGES) and is based on the generalized eigenvectors method and an iterative search over two (or one, in its approximate version) optimization variables. We also derive an upper-bound for the optimal values of the corresponding optimization problem and show by simulations that this upper-bound can be achieved by both algorithms. The proposed methods for maximizing the sum-rate in the two-way AF MIMO relaying system are shown to be superior to other state-of-the-art algorithms.Comment: 35 pages, 10 figures, Submitted to the IEEE Trans. Signal Processing in Nov. 201

    Capacity Bounds for Two-Hop Interference Networks

    Full text link
    This paper considers a two-hop interference network, where two users transmit independent messages to their respective receivers with the help of two relay nodes. The transmitters do not have direct links to the receivers; instead, two relay nodes serve as intermediaries between the transmitters and receivers. Each hop, one from the transmitters to the relays and the other from the relays to the receivers, is modeled as a Gaussian interference channel, thus the network is essentially a cascade of two interference channels. For this network, achievable symmetric rates for different parameter regimes under decode-and- forward relaying and amplify-and-forward relaying are proposed and the corresponding coding schemes are carefully studied. Numerical results are also provided.Comment: 8 pages, 5 figures, presented in Allerton Conference'0
    • …
    corecore