129 research outputs found

    Should {\Delta}{\Sigma} Modulators Used in AC Motor Drives be Adapted to the Mechanical Load of the Motor?

    Full text link
    We consider the use of {\Delta}{\Sigma} modulators in ac motor drives, focusing on the many additional degrees of freedom that this option offers over Pulse Width Modulation (PWM). Following some recent results, we show that it is possible to fully adapt the {\Delta}{\Sigma} modulator Noise Transfer Function (NTF) to the rest of the drive chain and that the approach can be pushed even to a fine adaptation of the NTF to the specific motor loading condition. We investigate whether and to what extent the adaptation should be pursued. Using a representative test case and extensive simulation, we conclude that a mild adaptation can be beneficial, leading to Signal to Noise Ratio (SNR) improvements in the order a few dB, while the advantage pushing the adaptation to the load tracking is likely to be minimal.Comment: Sample code available at http://pydsm.googlecode.co

    Development of an active power filter based on wide-bandgap semiconductors

    Get PDF
    Pla de Doctorat Industrial, Generalitat de CatalynuaElectrical and electronic equipment needs sinusoidal currents and voltages to function properly. Equipment such as computers, household appliances, electric vehicle chargers, and LED lights can distort the grid and worsen grid quality. Distorted electrical grids can cause malfunctions, reduce service life, and decrease the performance of connected equipment. Industry commonly solves these problems using active power filters, which can minimise the harmonics of the grid, eliminate undesirable reactive power, and restore balance to unbalanced power grids. This thesis deals with the design and implementation of an active power filter based on wide-bandgap semiconductors, which have properties that are superior to classical silicon devices. An active power filter’s design must take advantage of these benefits to build converters that are smaller, more efficient, and consume fewer resources. However, wide-bandgap semiconductors also present design challenges. Because the most commonly used active power filters in the industry are based on two-level voltage source converters, the research for this doctoral thesis focuses on this converter topology. Moreover, its main objective is to contribute new modulation techniques that are specially designed to work with wide-bandgap semiconductors. The proposed modulations consider different aspects, such as the computational cost of the algorithms, converter losses, and the electromagnetic distortion generated. First, this thesis presents a hexagonal sigma-delta (H-S¿) modulation based on sigma-delta (S¿) modulation. The properties of this modulation are studied, and the technique is compared with other widely used modulations. The comparison considers efficiency, harmonic distortion, the electromagnetic compatibility of the converter, and the type of wideband semiconductor used. In addition, a fast algorithm is mathematically developed to simplify the presented modulation and reduce its computational cost. Secondly, this thesis presents a family of sigma-delta modulations specially designed to improve electromagnetic compatibility: the reduced common-mode voltage sigma-delta (RCMV-S¿) modulations. These modulations avoid using the vectors that generate the maximum common-mode voltage, which significantly reduces the generated electromagnetic distortion without affecting the performance of the converter and its harmonic distortion. Finally, the proposed modulations are applied in a wide-bandgap power converter working as an active filter. Thus, it is verified that the techniques presented in this thesis will obtain satisfactory results when implemented in commercial active power filters.Els equips elèctrics i electrònics necessiten corrents i tensions sinusoïdals per funcionar correctament. Existeixen equips com els ordinadors, els electrodomèstics, els carregadors de vehicle elèctric o les llums LED, que poden distorsionar la xarxa i empitjorar la qualitat d'aquesta. Les xarxes elèctriques distorsionades poden causar el mal funcionament dels equips que s'hi connecten, reduir la seva vida útil i també empitjorar la seva eficiència. A la industria és habitual utilitzar filtres actius per a solucionar aquests problemes. Els filtres actius permeten minimitzar els harmònics presents a la Δxarxa, eliminar la potència reactiva no desitjada i equilibrar xarxes elèctriques desequilibrades. Aquesta tesi tracta sobre el disseny i la implementació d'un filtre actiu basat en semiconductors de banda ampla. Aquests semiconductors presenten propietats superiors als clàssics dispositius de silici. El disseny d'un filtre actiu ha d'aprofitar aquests avantatges per a construir convertidors més petits, eficients i que consumeixin menys recursos. Tanmateix, els semiconductors de banda ampla també presenten problemes que el disseny ha de solucionar. Els filtres actius més utilitzats en la indústria són els basats en convertidors de font de tensió (voltatge source converters) amb dos nivells. La recerca d'aquesta tesi doctoral està focalitzada en aquesta topologia de convertidor, i el seu principal objectiu és l’aportació de noves tècniques de modulació especialment dissenyades per treballar amb semiconductors de banda ampla. Les modulacions proposades tenen en compte diferents aspectes: el cost computacional dels algoritmes, les pèrdues del convertidor i la distorsió electromagnètica generada. En primer lloc, es presenta una modulació sigma-delta hexagonal (H-__) que es basa en la modulació sigma-delta (ΣΔ). S'estudien les propietats d'aquesta modulació i la tècnica es compara amb altres modulacions àmpliament usades. La comparativa realitzada considera l’eficiència, la distorsió harmònica, la compatibilitat electromagnètica del convertidor i el tipus de semiconductor de banda ampla emprat. Addicionalment, es desenvolupa matemàticament un algoritme ràpid per simplificar la modulació presentada i reduir el seu cost computacional. En segon lloc, es presenta una família de modulacions sigma-delta especialment dissenyades per millorar la compatibilitat electromagnètica: les modulacions sigmadelta amb tensió en mode comú reduïda (RCMV-ΣΔ ). Aquestes modulacions eviten fer servir els vectors que generen la màxima tensió en mode comú. D'aquesta manera es redueix significativament la distorsió electromagnètica generada sense afectar de forma notable al rendiment del convertidor ni a la seva distorsió harmònica. Finalment, les modulacions proposades s'apliquen en un convertidor de potència, basat en semiconductors de banda ampla, que treballa com a filtre actiu. Això es verifica que les tècniques presentades en aquesta tesi poden ser implementades en filtres actius comercials obtenint resultats satisfactoris.Postprint (published version

    Fast-processing sigma-delta strategies for three-phase wide-bandgap power converters with common-mode voltage reduction

    Get PDF
    © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The electromagnetic compatibility of wide-bandgap (WBG) power converters can be greatly improved using spread-spectrum modulation techniques. This article proposes a family of reduced common-voltage sigma–delta modulations (RCMV- S¿ ) for voltage source converters (VSC) that use gallium nitride (GaN) semiconductors. Specifically, this article proposes three new techniques: two reduced-state sigma–delta modulations (RS- S¿1 &2), and an active sigma–delta strategy (A- S¿ ). The proposed modulation techniques reduce or eliminate the common-mode voltage (CMV) dv/dt transitions and suppress the noise spikes in the conducted electromagnetic interference spectrum. Furthermore, this article proposes the use of fast-processing quantizers for RCMV- S¿ techniques as well as for hexagonal sigma–delta (H- S¿ ). These quantizers use a novel calculation methodology that simplifies the implementation of the proposed modulations and considerably reduces their computational cost. The performance and the total harmonic distortion (THD) of RCMV- S¿ techniques are analyzed here using MATLAB/Simulink and PLECS. Experimental results performed on a VSC converter that uses GaN e-HEMTs show how RCMV- S¿ techniques considerably improve electromagnetic compatibility and exhibit similar efficiencies and THD to those of H- S¿ .This work was supported by the Industrial Doctorates Plan of the Secretaria d’Universitats i Recerca del Departament d’Empresa i Coneixement de la Generalitat de Catalunya, the Centro para el Desarrollo Tecnológico Industrial (IDI-20200864), and in part by the Ministerio de Ciencia, Innovación y Universidades of Spain under Project PID2019-111420RB-I00.Peer ReviewedPostprint (published version

    Investigation of Time Domain Modulation and Switching-Mode Power Amplifiers Suitable for Digitally-Assisted Transmitters

    Get PDF
    Innovation in wireless communication has resulted in accelerating demand for smartphones using multiple communications protocols such as WiFi, Bluetooth and the many cellular standards deployed around the world. The variety of frequency, bandwidth and power requirements associated with each standard typically calls for the implementation of separate radio frequency (RF) front end hardware for each standard. This is a less-than-ideal solution in terms of cost and device area. Software-defined radio (SDR) promises to solve this problem by allowing the RF hardware to be digitally reconfigurable to adapt to any wireless standard. The application of machine learning and cognition algorithms to SDR will enable cognitive radios and cognitive wireless networks, which will be able to intelligently adapt to user needs and surrounding radio spectrum conditions. The challenge of fully reconfigurable transceivers is in implementing digitally-controlled RF circuits which have comparable performance to their fixed-frequency counterparts. Switching-mode power amplifiers (SMPA) are likely to be an important part of fully reconfigurable transmitters since their switching operation provides inherent compatibility with digital circuits, with the added benefit of very high efficiency. As a step to understanding the RF requirements of high efficiency and switching PAs, an inverse class F PA in push-pull configuration is implemented. This configuration is chosen for its similarity to the current mode class D (CMCD) topology. The fabricated PA achieves a peak drain efficiency of over 75% with 42.7 dBm (18.6 W) output power at 2.46 GHz. Since SMPAs cannot directly provide the linearity required by current and future wireless communications standards, amplitude information must be encoded into the RF signal in a different way. Given the superior time resolution of digital integrated circuit (IC) technology, a logical solution is to encode this information into the timing of the signal. The two most common techniques for doing so are pulse width modulation and delta-sigma modulation. However, the design of delta-sigma modulators requires simulation as part of the design process due to the lack of closed-form relationships between modulator parameters (such as resolution and oversampling) and performance figures (such as coding efficiency and signal quality). In particular, the coding efficiency is often ignored although it is an important part of ensuring transmitter efficiency with respect to the desired signal. A study of these relationships is carried out to observe the tradeoffs between them. It is found that increasing the speed or complexity of a DS modulated system does not necessarily translate to performance benefits as one might expect. These observations can have a strong impact on design choices at the system level

    Digital and Mixed Domain Hardware Reduction Algorithms and Implementations for Massive MIMO

    Get PDF
    Emerging 5G and 6G based wireless communications systems largely rely on multiple-input-multiple-output (MIMO) systems to reduce inherently extensive path losses, facilitate high data rates, and high spatial diversity. Massive MIMO systems used in mmWave and sub-THz applications consists of hundreds perhaps thousands of antenna elements at base stations. Digital beamforming techniques provide the highest flexibility and better degrees of freedom for phased antenna arrays as compared to its analog and hybrid alternatives but has the highest hardware complexity. Conventional digital beamformers at the receiver require a dedicated analog to digital converter (ADC) for every antenna element, leading to ADCs for elements. The number of ADCs is the key deterministic factor for the power consumption of an antenna array system. The digital hardware consists of fast Fourier transform (FFT) cores with a multiplier complexity of (N log2N) for an element system to generate multiple beams. It is required to reduce the mixed and digital hardware complexities in MIMO systems to reduce the cost and the power consumption, while maintaining high performance. The well-known concept has been in use for ADCs to achieve reduced complexities. An extension of the architecture to multi-dimensional domain is explored in this dissertation to implement a single port ADC to replace ADCs in an element system, using the correlation of received signals in the spatial domain. This concept has applications in conventional uniform linear arrays (ULAs) as well as in focal plane array (FPA) receivers. Our analysis has shown that sparsity in the spatio-temporal frequency domain can be exploited to reduce the number of ADCs from N to where . By using the limited field of view of practical antennas, multiple sub-arrays are combined without interferences to achieve a factor of K increment in the information carrying capacity of the ADC systems. Applications of this concept include ULAs and rectangular array systems. Experimental verifications were done for a element, 1.8 - 2.1 GHz wideband array system to sample using ADCs. This dissertation proposes that frequency division multiplexing (FDM) receiver outputs at an intermediate frequency (IF) can pack multiple (M) narrowband channels with a guard band to avoid interferences. The combined output is then sampled using a single wideband ADC and baseband channels are retrieved in the digital domain. Measurement results were obtained by employing a element, 28 GHz antenna array system to combine channels together to achieve a 75% reduction of ADC requirement. Implementation of FFT cores in the digital domain is not always exact because of the finite precision. Therefore, this dissertation explores the possibility of approximating the discrete Fourier transform (DFT) matrix to achieve reduced hardware complexities at an allowable cost of accuracy. A point approximate DFT (ADFT) core was implemented on digital hardware using radix-32 to achieve savings in cost, size, weight and power (C-SWaP) and synthesized for ASIC at 45-nm technology

    Innovative Concepts for the Electronic Interface of Massively Parallel MRI Phased Imaging Arrays

    Get PDF
    In Magnetic Resonance Imaging (MRI), the concept of parallel imaging shows significant enhancements in boosting the signal-to-noise ratio, reducing the imaging time, and enlarging the imaging field of view. However, this concept necessitates increased size, cost, and complexity of the MR system. This thesis introduces an innovative solution for the electronics of the MRI system that allows parallel imaging with massive number of channels while avoiding, at the same time, the associated drawback

    Glosarium Fisika

    Get PDF

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression

    Cutting Edge Nanotechnology

    Get PDF
    The main purpose of this book is to describe important issues in various types of devices ranging from conventional transistors (opening chapters of the book) to molecular electronic devices whose fabrication and operation is discussed in the last few chapters of the book. As such, this book can serve as a guide for identifications of important areas of research in micro, nano and molecular electronics. We deeply acknowledge valuable contributions that each of the authors made in writing these excellent chapters
    • …
    corecore