220 research outputs found

    Power-aware Manhattan routing on chip multiprocessors

    Get PDF
    Nous nous intéressons au routage des communications dans un processeur multi-cœur (CMP). Le but est de trouver un routage valide, c'est-à-dire un routage dans lequel la quantité de données routée entre deux cœurs voisins ne dépasse pas la bande passante maximale, et tel que la puissance dissipée dans les communications est minimale. Nous nous positionnons au niveau système : nous supposons que des applications, sous forme de graphes de tâches, s'exécutent sur le CMP, chaque tâche étant déjà assignée à un cœur. Nous avons donc un ensemble de communications à router entre les cœurs. Nous utilisons un modèle classique, dans lequel la puissance dissipée par un lien de communication est la somme d'une partie statique et d'une partie dynamique, cette dernière dépendant de la fréquence du lien. Cette fréquence est ajustable et proportionnelle à la bande passante. La politique la plus utilisée est le routage XY : chaque communication est en- voyée horizontalement, puis verticalement. Cependant si nous nous autorisons à utiliser les chemins de Manhattan entre la source et la destination, la puissance dissipée peut être considérablement réduite. De plus, il est parfois possible de trouver une solution, alors qu'il n'en existait pas avec un routage XY. Dans ce papier, nous comparons le routage XY et le routage via des chemins de Manhattan, aussi bien d'un point de vue théorique que d'un point de vue pratique. Nous considérons deux variantes du routage par chemins de Manhattan : dans un routage à chemin unique, un seul chemin peut être utilisé pour chaque communication, tandis que le routage à chemin multiples nous permet d'éclater une communication et de lui faire emprunter plusieurs routes. Nous établissons la NP-complétude du problème consistant à trouver un routage Manhattan qui minimise la puissance dissipée, exhibons la borne supérieure minimale du ratio entre la puissance dissipée par un routage XY et celle dissipée par un routage Manhattan, et pour terminer, nous effectuons des simulations pour étudier les performances de nos heuristiques de routage Manhattan

    PerfBound: Conserving Energy with Bounded Overheads in On/Off-Based HPC Interconnects

    Get PDF
    Energy and power are key challenges in high-performance computing. System energy efficiency must be significantly improved, and this requires greater efficiency in all subcomponents. An important target of optimization is the interconnect, since network links are always on, consuming power even during idle periods. A large number of HPC machines have a primary interconnect based on Ethernet (about 40 percent of TOP500 machines), which, since 2010, has included support for saving power via Energy Efficient Ethernet (EEE). Nevertheless, it is unlikely that HPC interconnects would use these energy saving modes unless the performance overhead is known and small. This paper presents PerfBound, a self-contained technique to manage on/off-based networks such as EEE, minimizing interconnect link energy consumption subject to a bound on the performance degradation. PerfBound does not require changes to the applications and it uses only local information already available at switches and NICs without introducing additional communication messages, and is also compatible with multi-hop networks. PerfBound is evaluated using traces from a production supercomputer. For twelve out of fourteen applications, PerfBound has high energy savings, up to 70 percent for only 1 percent performance degradation. This paper also presents DynamicFastwake, which extends PerfBound to exploit multiple low-power states. DynamicFastwake achieves an energy-delay product 10 percent lower than the original PerfBound techniqueThis research was supported by European Union’s 7th Framework Programme [FP7/2007-2013] under the Mont-Blanc-3 (FP7-ICT-671697) and EUROSERVER (FP7-ICT-610456) projects, the Ministry of Economy and Competitiveness of Spain (TIN2012-34557 and TIN2015-65316), Generalitat de Catalunya (FI-AGAUR 2012 FI B 00644, 2014-SGR-1051 and 2014-SGR-1272), the European Union’s Horizon2020 research and innovation programme under the HiPEAC-3 Network of Excellence (ICT-287759), and the Severo Ochoa Program (SEV-2011-00067) of the Spanish Government.Peer ReviewedPostprint (author's final draft

    Performance and power management for multi-core processors

    Get PDF
    This dissertation addresses the problem of power and performance management for various computing systems, from single voltage island multicore processors to power constrained extreme scale cloud systems. Balancing power and performance in modern computing systems is a complex optimization problem. This challenge is addressed by the statement of this thesis: Improving performance and power consumption in modern computing systems will require new techniques, and the body of control theories can provide the basis for such solutions. This thesis developed dynamic models for throughput and power that adjust well to workload variations. Those models are general and can be applied to various kinds of computing frameworks. Based on those models, we use feedback controllers for throughput regulation and power regulation. The controllers are based on integrators for variable gain designed for stabilizing the closed-loop system as well as for rapidly responding to changing workload in short time frames. The feedback control is robust with respect to model uncertainties and computing errors in the loop, and they exhibit fast convergence despite such errors. This thesis addresses the performance and power management through three main contributions: 1. Effective and efficient power & performance management techniques in a single voltage island multi-core processor. 2. Maximizing power efficiency under a power cap in a multi-core processor that is composed of several voltage islands. 3. A hierarchical power management technique to improve performance and energy efficiency under power budgets in a cloud system.Ph.D

    Trends and drivers of end-use energy demand and the implications for managing energy in food supply chains: Synthesising insights from the social sciences

    Get PDF
    AbstractThe Climate Change Act commits the UK Government to an ambitious 80% reduction in greenhouse gas emissions by 2050; this paper provides a consumer focused framework to devise, inform and evaluate potential interventions to reduce energy demand and emissions in food supply chains. Adopting a Life cycle Assessment (LCA) framing we explore the relationship between production and consumption by reviewing trends in the food sector with implications for energy demand. Secondly, a multidisciplinary review of the literature on sustainable consumption is structured around the ISM (Individual, Social, Material Contexts) framework devised by Southerton et al., bringing insights from a range of theoretical perspectives. Combined, these frameworks complement LCA approaches to mapping and quantifying emissions hotspots in a supply chain in two ways.First, production and consumption must be considered with the ‘consumer’ interactive throughout, one of many factors affecting energy use at each stage, rather than restricted to the end of a supply chain. Second, when considering consumption patterns and how they might be changed, drawing on the insights of multiple disciplines allows for a fuller array of potential interventions to be identified. Given the complexity of the food system and the range of relevant sustainability goals, there are several areas in which the ‘preferred trajectories’ for ‘more sustainable’ consumption patterns are unclear, particularly where data on variation, causal relationships and longitudinal change is lacking. Technical and social understandings of ‘desirable’ change in the food sector must continue to be developed in parallel to achieve such challenging reductions in emissions

    The Taste of Austerity: exploring the everyday of food aid in East Bristol

    Get PDF
    This thesis examines the everyday of food aid and food insecurity in East Bristol by exploring three different community-based models of food aid – the food bank, the community kitchen, and the community food centre. Since austerity, food insecurity has increased exponentially, and community-based sites of food aid have emerged to provide much needed support for people experiencing hardship. However, where academic and political attention has been focused on the food bank, other emergent forms of food aid have been underexplored. Addressing this gap in knowledge, this thesis takes a place-based approach to the study of food aid, and explores the wider landscape of food aid, revealing how they work, why people use them, what happens in these spaces, and how they are used, in order to better understand the value, significance and experience of food aid for people experiencing food insecurity. Informed by a multi-sited ethnography built on 11 months of fieldwork, this thesis is produced using data collected through participant observation, semi structured interviews (35), a focus group, and photo documentation. Centering the voices of those accessing and providing food aid, this thesis engages with themes of precarity and power, to highlight these spaces as sites of multiplicity with the potential for care, discipline, control and sociality

    Synchronization-Point Driven Resource Management in Chip Multiprocessors.

    Get PDF
    With the proliferation of Chip Multiprocessors (CMPs), shared memory multi-threaded programs are expanding fast in every application domain. These programs exhibit execution characteristics that go beyond those observed in single-threaded programs, mainly due to data sharing and synchronization. To ensure that next generation CMPs will perform well on such anticipated workloads, it is vital to understand how these programs and architectures interact, and exploit the unique opportunities presented. This thesis examines the time-varying execution characteristics of the shared memory workloads in conjunction to the synchronization points that exist in the programs. The main hypothesis is that the type, the position, and the repetitive execution of synchronization constructs can be exploited to unfold important execution phases and enable new optimization opportunities. The research provides a simple application-driven approach for predicting the program behavior and effectively driving dynamic performance optimization and resource management actions in future CMPs. In the first part of this thesis, I show how synchronization points relate to various program-wide periodic behaviors. Based on the observations, I develop a framework where user-level synchronization primitives are exposed to the hardware and monitored to detect program phases and guide dynamic adaptation. Through workload-driven evaluation, I demonstrate the effectiveness of the framework in improving the performance/power in on-chip interconnects. The second part of the thesis explores in depth the inter-thread communication behaviors. I show that although synchronization points under the shared memory model do not expose any communication details, they indicate well the points where coherence communication patterns change or repeat. By leveraging this property, I design a synchronization-point-based coherence predictor that uncovers communication patterns with high accuracy, while consuming significantly less hardware resources compared to existing predictors. In the last part, I investigate the underlying reasons causing threads to wait in synchronization points, wasting resources. I show that these reasons can vary even across different programs phases, and existing critical-path predictors can render ineffective under certain conditions. I then present a new scheme that improves predictability by incorporating history information from previous points. The new design is robust and can amortize the run-time imbalances to improve the system's performance and/or energy
    • …
    corecore