148 research outputs found

    On the optimization of power assignment to support multicast applications in HAP-based systems

    Get PDF
    The goal of this research work is to investigate how efficient High Altitude Platforms (HAPs) can be in supporting Multimedia Broadcast/Multicast Service (MBMS) in scenarios in which the terrestrial coverage is not available. Specifically, we propose to implement an effective Radio Resources Management (RRM) policy into the HAP Radio Network Controller (H-RNC), whose main aim is to increase the overall system capacity. The proposed technique achieves its goal by dynamically selecting the most efficient multicast transport channel in terms of power consumption, chosen amongst Dedicated Channel (DCH), Forward Access Channel (FACH), and High Speed Downlink Shared Channel (HS-DSCH). Advantages deriving from the joint use of channels belonging to different categories are exploited. Results achieved when using the proposed RRM are quite manifest and witnesses to the necessity of providing such a feature when deploying integrated HAP/Terrestrial platforms supporting MBMS services.Peer ReviewedPostprint (published version

    MBMS—IP Multicast/Broadcast in 3G Networks

    Get PDF
    In this article, the Multimedia Broadcast and Multicast Service (MBMS) as standardized in 3GPP is presented. With MBMS, multicast and broadcast capabilities are introduced into cellular networks. After an introduction into MBMS technology, MBMS radio bearer realizations are presented. Different MBMS bearer services like broadcast mode, enhanced broadcast mode and multicast mode are discussed. Streaming and download services over MBMS are presented and supported media codecs are listed. Service layer components as defined in Open Mobile Alliance (OMA) are introduced. For a Mobile TV use case capacity improvements achieved by MBMS are shown. Finally, evolution of MBMS as part of 3GPP standardization is presented

    5G Radio Access Networks Enabling Efficient Point-to-Multipoint Transmissions

    Full text link
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.[EN] The first release of 5th Generation (5G) technology from 3rd Generation Project Partnership (3GPP) Rel'15 has been completed in December 2018. An open issue with this release of standards is that it only supports unicast communications in the core network and Point-To-Point (PTP) transmissions in the Radio Access Network (RAN), and does not support multicast/broadcast communications and Point-To-Multipoint (PTM) transmissions, which are 3GPP system requirements for 5G applications in a number of vertical sectors, such as Automotive, Airborne Communications, Internet-of-Things, Media & Entertainment, and Public Warning & Safety systems. In this article, we present novel mechanisms for enhancing the 5G unicast architecture with minimal footprint, to enable efficient PTM transmissions in the RAN, and to support multicast communications in the Rel'15 core as an in-built delivery optimization feature of the system. This approach will enable completely new levels of network management and delivery cost-efficiency.This work was supported in part by the European Commission under the 5G Infrastructure Public Private Partnership project "5G-Xcast: Broadcast and Multicast Communication Enablers for the Fifth Generation of Wireless Systems" (H2020-ICT-2016-2 call, grant 761498). The views expressed here are those of the authors and do not necessarily represent the project.Säily, M.; Barjau, C.; Navrátil, D.; Prasad, A.; Gomez-Barquero, D.; Tesema, FB. (2019). 5G Radio Access Networks Enabling Efficient Point-to-Multipoint Transmissions. IEEE Vehicular Technology Magazine. 14(4):29-37. https://doi.org/10.1109/MVT.2019.2936657S293714

    Evaluation of channel switching threshold for MBMS in UMTS networks

    Get PDF
    In this project, thershold to switching from dedicated to shared/common channel for efficent delivery of MBMS serveces have been evaluated. It also been evaluated the coverage using multiple channer in function of the distribution of the user

    A cloud-enabled small cell architecture in 5G networks for broadcast/multicast services

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The evolution of 5G suggests that communication networks become sufficiently flexible to handle a wide variety of network services from various domains. The virtualization of small cells as envisaged by 5G, allows enhanced mobile edge computing capabilities, thus enabling network service deployment and management near the end user. This paper presents a cloud-enabled small cell architecture for 5G networks developed within the 5G-ESSENCE project. This paper also presents the conformity of the proposed architecture to the evolving 5G radio resource management architecture. Furthermore, it examines the inclusion of an edge enabler to support a variety of virtual network functions in 5G networks. Next, the improvement of specific key performance indicators in a public safety use case is evaluated. Finally, the performance of a 5G enabled evolved multimedia broadcast multicast services service is evaluated.Peer ReviewedPostprint (author's final draft
    • …
    corecore