2,141 research outputs found

    An Agent Based Simulation of Smart Metering Technology Adoption

    Get PDF
    Based on the classic behavioural theory “the Theory of Planned Behaviour”, we develop an agent-based model to simulate the diffusion of smart metering technology in the electricity market. We simulate the emergent adoption of smart metering technology under different management strategies and economic regulations. Our research results show that in terms of boosting the take-off of smart meters in the electricity market, choosing the initial users on a random and geographically dispersed basis and encouraging meter competition between energy suppliers can be two very effective strategies. We also observe an “S-curve” diffusion of smart metering technology and a “lock-in” effect in the model. The research results provide us with insights as to effective policies and strategies for the roll-out of smart metering technology in the electricity market

    Ready To Roll: Southeastern Pennsylvania's Regional Electric Vehicle Action Plan

    Get PDF
    On-road internal combustion engine (ICE) vehicles are responsible for nearly one-third of energy use and one-quarter of greenhouse gas (GHG) emissions in southeastern Pennsylvania.1 Electric vehicles (EVs), including plug-in hybrid electric vehicles (PHEVs) and all-electric vehicles (AEVs), present an opportunity to serve a significant portion of the region's mobility needs while simultaneously reducing energy use, petroleum dependence, fueling costs, and GHG emissions. As a national leader in EV readiness, the region can serve as an example for other efforts around the country."Ready to Roll! Southeastern Pennsylvania's Regional EV Action Plan (Ready to Roll!)" is a comprehensive, regionally coordinated approach to introducing EVs and electric vehicle supply equipment (EVSE) into the five counties of southeastern Pennsylvania (Bucks, Chester, Delaware, Montgomery, and Philadelphia). This plan is the product of a partnership between the Delaware Valley Regional Planning Commission (DVRPC), the City of Philadelphia, PECO Energy Company (PECO; the region's electricity provider), and Greater Philadelphia Clean Cities (GPCC). Additionally, ICF International provided assistance to DVRPC with the preparation of this plan. The plan incorporates feedback from key regional stakeholders, national best practices, and research to assess the southeastern Pennsylvania EV market, identify current market barriers, and develop strategies to facilitate vehicle and infrastructure deployment

    Sustainable energy management for a small rural subdivision in New Zealand : a thesis presented in fulfilment of the requirements for the degree of Master of Technology in Energy Management, Massey University, Palmerston North, New Zealand

    Get PDF
    An eight-lot residential subdivision in central Wairarapa is being developed to demonstrate the principles of sustainable resource management. Local energy sources for low and high grade use, including electricity sourced from proposed grid-integrated, on-site, distributed generation will supplement imported network electricity. A unique component is an internal loop grid for lot connection that interfaces with the local network through a single connection point. A decision model was designed as a decision-support tool for the development based on the annual supply-demand electrical energy balance, site infrastructure covenants and a range of economic and technology criteria. Solar and wind resources were assessed for potential supply of electricity to the community energy system. Three demand profiles were developed using supplied and estimated electrical demand data; and included assumptions on thermal performance of the houses, the use of low-grade heat, user behaviour, and appliance use. Supply and demand were analysed as daily average profiles by hour for each month of the year. The decision model outputs were designed to give a graphic view of the system options. The accompanying output datasets also enabled a number of scenarios for connection configurations, load management, and economic sensitivity to be explored for their impact on the communal approach to managing energy. The viability of the community energy system is significantly influenced by managing demand level in conjunction with system size, capital cost management, and tariffs for electricity import and export. Energy requirements could be best met in the short term by installing a site-wide mixed generation system of sized capacity between 5 and 11kW, supported by metering and information technology to deliver management data to the residents. Future research opportunities exist to continue monitoring technical, economic and social outcomes from this unique community development. Incentivising private investment in userfocussed energy innovations is an option for New Zealand to consider in the current climate of market-driven large scale electricity developments

    A Practical Review to Support the Implementation of Smart Solutions within Neighbourhood Building Stock

    Get PDF
    The construction industry has witnessed an increase in the use of digital tools and smart solutions, particularly in the realm of building energy automation. While realising the potential benefits of smart cities, a broader scope of smart initiatives is required to support the transition from smart buildings towards smart neighbourhoods, which are considered critical urban development units. To support the interplay of smart solutions between buildings and neighbourhoods, this study aimed to collect and review all the smart solutions presented in existing scientific articles, the technical literature, and realised European projects. These solutions were classified into two main sections, buildings and neighbourhoods, which were investigated through five domains: building-energy-related uses, renewable energy sources, water, waste, and open space management. The quantitative outcomes demonstrated the potential benefits of implementing smart solutions in areas ranging from buildings to neighbourhoods. Moreover, this research concluded that the true enhancement of energy conservation goes beyond the building’s energy components and can be genuinely achieved by integrating intelligent neighbourhood elements owing to their strong interdependencies. Future research should assess the effectiveness of these solutions in resource conservation

    Assessment of Future Water Efficiency Measures

    Full text link
    The Victorian water utilities have been active in the implementation of water efficiency for many years. Similar to other jurisdictions this intensified during the Millennium drought. The approaches employed during the drought involved both individual and joint water utility initiatives, often in collaboration with the Victorian government. These initiatives covered both the residential and non-residential sectors and were supported by the important collaborative research initiated in 2003 under the $50m Smart Water Fund (now closed). This research report “Assessment of Future Water Efficiency Measures” has been developed by the Institute for Sustainable Futures (ISF), University of Technology Sydney, on behalf of the three Melbourne retailers, Melbourne Water, Barwon Water and the Department of Environment, Land, Water and Planning. The rapid study does not aim to be exhaustive but to begin to gather information to assist in taking stock of the current efficiency situation and to look on the horizon in terms of how efficiency might change. It aims to gather information that will be useful to assist in testing alternative potential scenarios of long term demand forecasts and new potential short and long term efficiency program opportunities that can be actioned when deemed appropriate into the future. There is significant additional conservation potential available as we look to the future in terms of new more efficient appliances and ways to interact with customers by tapping into new technical and behavioural opportunities
    • …
    corecore