11,972 research outputs found

    Design techniques for low-power systems

    Get PDF
    Portable products are being used increasingly. Because these systems are battery powered, reducing power consumption is vital. In this report we give the properties of low-power design and techniques to exploit them on the architecture of the system. We focus on: minimizing capacitance, avoiding unnecessary and wasteful activity, and reducing voltage and frequency. We review energy reduction techniques in the architecture and design of a hand-held computer and the wireless communication system including error control, system decomposition, communication and MAC protocols, and low-power short range networks

    Low Power system Design techniques for mobile computers

    Get PDF
    Portable products are being used increasingly. Because these systems are battery powered, reducing power consumption is vital. In this report we give the properties of low power design and techniques to exploit them on the architecture of the system. We focus on: min imizing capacitance, avoiding unnecessary and wasteful activity, and reducing voltage and frequency. We review energy reduction techniques in the architecture and design of a hand-held computer and the wireless communication system, including error control, sys tem decomposition, communication and MAC protocols, and low power short range net works

    Automated Circuit Approximation Method Driven by Data Distribution

    Full text link
    We propose an application-tailored data-driven fully automated method for functional approximation of combinational circuits. We demonstrate how an application-level error metric such as the classification accuracy can be translated to a component-level error metric needed for an efficient and fast search in the space of approximate low-level components that are used in the application. This is possible by employing a weighted mean error distance (WMED) metric for steering the circuit approximation process which is conducted by means of genetic programming. WMED introduces a set of weights (calculated from the data distribution measured on a selected signal in a given application) determining the importance of each input vector for the approximation process. The method is evaluated using synthetic benchmarks and application-specific approximate MAC (multiply-and-accumulate) units that are designed to provide the best trade-offs between the classification accuracy and power consumption of two image classifiers based on neural networks.Comment: Accepted for publication at Design, Automation and Test in Europe (DATE 2019). Florence, Ital

    Multiple objective optimisation of data and control paths in a behavioural silicon compiler

    No full text
    The objective of this research was to implement an 'intelligent' silicon compiler that provides the ability to automatically explore the design space and optimise a design, given as a behavioural description, with respect to multiple objectives. The objective has been met by the implementation of the MOODS Silicon Compiler. The user submits goals or objectives to the system which automatically finds near optimal solutions. As objectives may be conflicting, trade-offs between synthesis tasks are essential and consequently their simultaneous execution must occur. Tasks are decomposed into behaviour preserving transformations which, due to their completeness, can be applied in any sequence to a multi-level representation of the design. An accurate evaluation of the design is ensured by feeding up technology dependent information to a cost function. The cost function guides the simulated annealing algorithm in applying transformations to iteratively optimise the design. The simulated annealing algorithm provides an abstractness from the transformations and designer's objectives. This abstractness avoids the construction of tailored heuristics which pre-program trade-offs into a system. Pre-programmed trade-offs are used in most systems by assuming a particular shape to the trade-off curve and are inappropriate as trade-offs are technology dependent. The lack of pre-programmed trade-offs in the MOODS system allows it to adapt to changes in technology or library cells. The choice of cells and their subsequent sharing are based on the user's criteria expressed in the cost function, rather than being pre-programmed into the system. The results show that implementations created by MOODS are better than or equal to those achieved by other systems. Comparisons with other systems highlighted the importance of specifying all of a design's data as the lack of data misrepresents the design leading to misleading comparisons. The MOODS synthesis system includes an efficient method for automated design space exploration where a varied set of near optimal implementations can be produced from a single behavioural specification. Design space exploration is an important aspect of designing by high-level synthesis and in the development of synthesis systems. It allows the designer to obtain a perspicuous characterization of a design's design space allowing him to investigate alternative designs

    Reducing dynamic power consumption in next generation DS-CDMA mobile communication receivers

    Get PDF
    Reduction of the power consumption in portable wireless receivers is important for cellular systems, including UMTS and IMT2000. This paper explores the architectural design-space and methodologies for reducing the dynamic power dissipation in the Direct Sequence Code Division Multiple Access (DS-CDMA) downlink RAKE receiver. At the algorithm level, we investigate the tradeoffs of reduced precision and arithmetic complexity on the receiver performance. We then present and analyse two architectures for implementing the reference and reduced complexity receivers, with respect to dynamic power dissipation. The combined effect of reduced precision and complexity reduction leads to a 37.44% power savings.Nokia CorporationTexas Instruments Inc.National Science Foundatio

    An Experimental Study of Reduced-Voltage Operation in Modern FPGAs for Neural Network Acceleration

    Get PDF
    We empirically evaluate an undervolting technique, i.e., underscaling the circuit supply voltage below the nominal level, to improve the power-efficiency of Convolutional Neural Network (CNN) accelerators mapped to Field Programmable Gate Arrays (FPGAs). Undervolting below a safe voltage level can lead to timing faults due to excessive circuit latency increase. We evaluate the reliability-power trade-off for such accelerators. Specifically, we experimentally study the reduced-voltage operation of multiple components of real FPGAs, characterize the corresponding reliability behavior of CNN accelerators, propose techniques to minimize the drawbacks of reduced-voltage operation, and combine undervolting with architectural CNN optimization techniques, i.e., quantization and pruning. We investigate the effect of environmental temperature on the reliability-power trade-off of such accelerators. We perform experiments on three identical samples of modern Xilinx ZCU102 FPGA platforms with five state-of-the-art image classification CNN benchmarks. This approach allows us to study the effects of our undervolting technique for both software and hardware variability. We achieve more than 3X power-efficiency (GOPs/W) gain via undervolting. 2.6X of this gain is the result of eliminating the voltage guardband region, i.e., the safe voltage region below the nominal level that is set by FPGA vendor to ensure correct functionality in worst-case environmental and circuit conditions. 43% of the power-efficiency gain is due to further undervolting below the guardband, which comes at the cost of accuracy loss in the CNN accelerator. We evaluate an effective frequency underscaling technique that prevents this accuracy loss, and find that it reduces the power-efficiency gain from 43% to 25%.Comment: To appear at the DSN 2020 conferenc

    Lunar contour mapping system /lucom/ final report, 5 aug. 1964 - 18 mar. 1965

    Get PDF
    Radar sensor system for acquisition of lunar surface data - Lunar contour mapping syste

    An investigation of potential applications of OP-SAPS: Operational Sampled Analog Processors

    Get PDF
    The application of OP-SAP's (operational sampled analog processors) in pattern recognition system is summarized. Areas investigated include: (1) human face recognition; (2) a high-speed programmable transversal filter system; (3) discrete word (speech) recognition; and (4) a resolution enhancement system

    Logic and Memory Design Based on Unequal Error Protection for Voltage-scalable, Robust and Adaptive DSP Systems

    Get PDF
    In this paper, we propose a system level design approach considering voltage over-scaling (VOS) that achieves error resiliency using unequal error protection of different computation elements, while incurring minor quality degradation. Depending on user specifications and severity of process variations/channel noise, the degree of VOS in each block of the system is adaptively tuned to ensure minimum system power while providing "just-the-right” amount of quality and robustness. This is achieved, by taking into consideration block level interactions and ensuring that under any change of operating conditions, only the "less- crucial” computations, that contribute less to block/system output quality, are affected. The proposed approach applies unequal error protection to various blocks of a system-logic and memory-and spans multiple layers of design hierarchy-algorithm, architecture and circuit. The design methodology when applied to a multimedia sub-system shows large power benefits (up to 69% improvement in power consumption) at reasonable image quality while tolerating errors introduced due to VOS, process variations, and channel nois
    • …
    corecore