171 research outputs found

    NetFPGA: status, uses, developments, challenges, and evaluation

    Get PDF
    The constant growth of the Internet, driven by the demand for timely access to data center networks; has meant that the technological platforms necessary to achieve this purpose are outside the current budgets. In this order to make and validate relevant, timely and relevant contributions; it is necessary that a wider community, access to evaluation, experimentation and demonstration environments with specifications that can be compared with existing networking solutions. This article introduces the NetFPGA, which is a platform to develop network hardware for reconfigurable and rapid prototyping. It’s introduces the application areas in high-performance networks, advantages for traffic analysis, packet flow, hardware acceleration, power consumption and parallel processing in real time. Likewise, it presents the advantages of the platform for research, education, innovation, and future trends of this platform. Finally, we present a performance evaluation of the tool called OSNT (Open-Source Network Tester) and shows that OSNT has 95% accuracy of timestamp with resolution of 10ns for the generation of TCP traffic, and 90% efficiency capturing packets at 10Gbps of full line-rate

    Scalable network virtualization using FPGAs

    Full text link

    Performance comparison between the Click Modular Router and the NetFPGA

    Get PDF
    It is possible to forward minimum-sized packets at rates of hundreds of Mbps using commodity hardware and Linux. We had a preference for the Click Modular Router platform due its flexibility and the fact that it claimed to have equal or higher performance than native forwarding if used with its polling drivers. Moreover, the NetFPGA is an open networking platform accelerator that enables researchers and instructors to build working prototypes of high-speed, hardware-accelerated networking systems. NetFPGA reference designs comprised in the system include an IPv4 router, an Ethernet switch, a four-port NIC, and SCONE (Software Component of NetFPGA). Researchers have used the platform to build advanced network flow processing systems. We have followed the RFC1242 - Benchmarking Terminology for Network Interconnection Devices - and the RFC2544 - Benchmarking Methodology for Network Interconnection Devices - in order to define the specific set of tests to use to describe the performance characteristics of the two routers. We have also shown a test comparison between the NetFPGA and the Click router about a file transfer using the FTP and the HTTP protocol.Overall, the NetFPGA router performance outperforms the Click router performance

    Design of a Traffic-Aware Governor for Green Routers

    Get PDF
    Today the reduction of energy consumption in telecommunications networks is one of the main goals to be pursued by manufacturers and researchers. In this context, the paper focuses on routers that achieve energy saving by applying the frequency scaling approach. The target is to propose an analytical model to support designers in choosing the main configuration parameters of the Router Governor in order to meet Quality of Service (QoS) requirements while maximizing energy saving gain. More specifically, the model is used to evaluate the input traffic impacts on the choice of the active router clock frequencies and on the overall green router performance. A case study based on the open NetFPGA reference router is considered to show how the proposed model can be easily applied to a real case scenario

    NetFPGA SUME: Toward 100 Gbps as research commodity

    Get PDF
    The demand-led growth of datacenter networks has meant that many constituent technologies are beyond the budget of the research community. In order to make and validate timely and relevant research contributions, the wider research community requires accessible evaluation, experimentation and demonstration environments with specification comparable to the subsystems of the most massive datacenter networks. We present NetFPGA SUME, an FPGA-based PCIe board with I/O capabilities for 100Gb/s operation as NIC, multiport switch, firewall, or test/measurement environment. As a powerful new NetFPGA platform, SUME provides an accessible development environment that both reuses existing codebases and enables new designs.This work was jointly supported by EPSRC INTERNET Project EP/H040536/1, National Science Foundation under Grant No. CNS-0855268, and Defense Advanced Research Projects Agency (DARPA) and Air Force Research Laboratory (AFRL), under contract FA8750-11-C-0249.This is the author accepted manuscript. The final version is available from IEEE at http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6866035&sortType%3Dasc_p_Sequence%26filter%3DAND%28p_IS_Number%3A5210076%29
    corecore