350 research outputs found

    A comprehensive study of key Electric Vehicle (EV) components, technologies, challenges, impacts, and future direction of development

    Get PDF
    Abstract: Electric vehicles (EV), including Battery Electric Vehicle (BEV), Hybrid Electric Vehicle (HEV), Plug-in Hybrid Electric Vehicle (PHEV), Fuel Cell Electric Vehicle (FCEV), are becoming more commonplace in the transportation sector in recent times. As the present trend suggests, this mode of transport is likely to replace internal combustion engine (ICE) vehicles in the near future. Each of the main EV components has a number of technologies that are currently in use or can become prominent in the future. EVs can cause significant impacts on the environment, power system, and other related sectors. The present power system could face huge instabilities with enough EV penetration, but with proper management and coordination, EVs can be turned into a major contributor to the successful implementation of the smart grid concept. There are possibilities of immense environmental benefits as well, as the EVs can extensively reduce the greenhouse gas emissions produced by the transportation sector. However, there are some major obstacles for EVs to overcome before totally replacing ICE vehicles. This paper is focused on reviewing all the useful data available on EV configurations, battery energy sources, electrical machines, charging techniques, optimization techniques, impacts, trends, and possible directions of future developments. Its objective is to provide an overall picture of the current EV technology and ways of future development to assist in future researches in this sector

    Study on System Control for Wireless In-Wheel Motor with Multiple Power Sources

    Get PDF
    University of Tokyo(東京大学

    Enabling Development; design of a the Single Seat Wintec Electric Vehicle.(SSWEV)

    Get PDF
    The research project is related to the single seat three-wheel electric vehicle. Due to the high consumption of the oil in New Zealand (NZ) which have a direct impact on the economy, the authorities are now looking for an alternative source to power the vehicles and revolutionize the transport industry. There is another motive behind the development of electric vehicle (EV) which is linked with the environmental conditions of the country. The Internal Combustion Engine (ICE) vehicles increase the air pollution in the country and due to which the global warming has become a serious issue. To reduce the global warming effect and air pollution the electric vehicles have become a strong candidate or choice for the transportation. This project covers the electric vehicle in three parts: the Road Legal Status of EV in New Zealand, the Battery Electric System(BES), and Vehicle Design. There are some limitations which are associated with electric vehicles such as legislation does not encourage the people to purchase an electric vehicle, and the manufacturers are still interested in ICE vehicles. The research project proposes the desired policy for the EV in New Zealand. The possible design of the EV is proposed which is modeled in SolidWorks. Furthermore, the entire battery electric system and its management is included in the report which describes the proposed Battery electric system for single-seat electric vehicle. The primary goal in developing the battery electric system of the EV was to ensure that it has long driving range. The current EV are struggling to achieve the long driving range. The design selected for the EV is Reverse-trike. The unique features include the shifting of the centre of mass of the more extensive position. This design provides more stability and traction to the vehicle as the weight shift is towards the front wheels of the car

    Trends in electric vehicles research

    Get PDF
    Electrification of vehicles has been recognised as a key part of meeting global climate change targets and a key aspect of sustainable transport. Here, an integrative and bird\u27s-eye view of scholarly research on Electric Vehicles (EV) is provided with a focus on an objective and quantitative determination of research trends. The analyses suggest that areas of EV research linked to (i) charging infrastructure, (ii) EV adoption, (iii) thermal management systems and (iv) routing problem have been the distinct trending topics in recent years. While hybrid EV proves to have been a dominant keyword, its frequency of use has either flattened out in recent years or is notably on the decline across major subfields of EV research. The findings provide objective indications about the directions to which EV research is currently headed. A secondary outcome is the determination of references that have been most instrumental in developing each major stream of EV research

    Battery Management System for Future Electric Vehicles

    Get PDF
    The future of electric vehicles relies nearly entirely on the design, monitoring, and control of the vehicle battery and its associated systems. Along with an initial optimal design of the cell/pack-level structure, the runtime performance of the battery needs to be continuously monitored and optimized for a safe and reliable operation and prolonged life. Improved charging techniques need to be developed to protect and preserve the battery. The scope of this Special Issue is to address all the above issues by promoting innovative design concepts, modeling and state estimation techniques, charging/discharging management, and hybridization with other storage components

    Practice and Innovations in Sustainable Transport

    Get PDF
    The book continues with an experimental analysis conducted to obtain accurate and complete information about electric vehicles in different traffic situations and road conditions. For the experimental analysis in this study, three different electric vehicles from the Edinburgh College leasing program were equipped and tracked to obtain over 50 GPS and energy consumption data for short distance journeys in the Edinburgh area and long-range tests between Edinburgh and Bristol. In the following section, an adaptive and robust square root cubature Kalman filter based on variational Bayesian approximation and Huber’s M-estimation is proposed to accurately estimate state of charge (SOC), which is vital for safe operation and efficient management of lithium-ion batteries. A coupled-inductor DC-DC converter with a high voltage gain is proposed in the following section to match the voltage of a fuel cell stack to a DC link bus. Finally, the book presents a review of the different approaches that have been proposed by various authors to mitigate the impact of electric buses and electric taxis on the future smart grid

    Urban and extra-urban hybrid vehicles: a technological review

    Get PDF
    Pollution derived from transportation systems is a worldwide, timelier issue than ever. The abatement actions of harmful substances in the air are on the agenda and they are necessary today to safeguard our welfare and that of the planet. Environmental pollution in large cities is approximately 20% due to the transportation system. In addition, private traffic contributes greatly to city pollution. Further, “vehicle operating life” is most often exceeded and vehicle emissions do not comply with European antipollution standards. It becomes mandatory to find a solution that respects the environment and, realize an appropriate transportation service to the customers. New technologies related to hybrid –electric engines are making great strides in reducing emissions, and the funds allocated by public authorities should be addressed. In addition, the use (implementation) of new technologies is also convenient from an economic point of view. In fact, by implementing the use of hybrid vehicles, fuel consumption can be reduced. The different hybrid configurations presented refer to such a series architecture, developed by the researchers and Research and Development groups. Regarding energy flows, different strategy logic or vehicle management units have been illustrated. Various configurations and vehicles were studied by simulating different driving cycles, both European approval and homologation and customer ones (typically municipal and university). The simulations have provided guidance on the optimal proposed configuration and information on the component to be used

    Furniture Mover

    Get PDF
    The movement of furniture is an often overlooked pain point for physically-challenged individuals, especially when rearranging furniture in a room. These individuals may try to minimize the risk of tip-over or strain-related injuries by seeking assistance from others. Still, some individuals are limited in finding volunteers forthcoming and capable of helping. This can lead to a dilemma of either being able to find individuals willing to assist in the process or risking one’s own personal safety when moving furniture. The proposed design project implements the use of multiple, independent platforms with mecanum wheels placed underneath each corner of a piece of furniture by a user. These devices will work together to move furniture based on commands from a wireless device, allowing for the adjustment of furniture with more flexible positioning and will negate the requirement of human force, preventing physical strain on one\u27s body

    Overview of Main Electric Subsystems of Zero-Emission Vehicles

    Get PDF
    The rapid growth of the electric vehicle market has stimulated the attention of power electronics and electric machine experts in order to find increasingly efficient solutions to the demands of this application. The constraints of space, weight, reliability, performance, and autonomy for the power train of the electric vehicle (EV) have increased the attention of scientific research in order to find more and more appropriate technological solutions. In this chapter, it proposes a focus on the main subsystems that make a zero-emission vehicle (ZEV), examining current features and topological configurations proposed in the literature. This analysis is preliminary to the various electric vehicle architectures proposed in the final paragraph. In particular, the electric drive represents the core of the electric vehicle propulsion. It is realized by different subsystems that have a single mission: ensure the requested power/energy based on the operating condition. Particular attention will be devoted to power subsystems, which are the fundamental elements to improving the performance of the ZEV

    Technology development of electric vehicles: A review

    Get PDF
    To reduce the dependence on oil and environmental pollution, the development of electric vehicles has been accelerated in many countries. The implementation of EVs, especially battery electric vehicles, is considered a solution to the energy crisis and environmental issues. This paper provides a comprehensive review of the technical development of EVs and emerging technologies for their future application. Key technologies regarding batteries, charging technology, electric motors and control, and charging infrastructure of EVs are summarized. This paper also highlights the technical challenges and emerging technologies for the improvement of efficiency, reliability, and safety of EVs in the coming stages as another contribution
    corecore