20,846 research outputs found

    Radio Frequency Energy Harvesting and Management for Wireless Sensor Networks

    Full text link
    Radio Frequency (RF) Energy Harvesting holds a promising future for generating a small amount of electrical power to drive partial circuits in wirelessly communicating electronics devices. Reducing power consumption has become a major challenge in wireless sensor networks. As a vital factor affecting system cost and lifetime, energy consumption in wireless sensor networks is an emerging and active research area. This chapter presents a practical approach for RF Energy harvesting and management of the harvested and available energy for wireless sensor networks using the Improved Energy Efficient Ant Based Routing Algorithm (IEEABR) as our proposed algorithm. The chapter looks at measurement of the RF power density, calculation of the received power, storage of the harvested power, and management of the power in wireless sensor networks. The routing uses IEEABR technique for energy management. Practical and real-time implementations of the RF Energy using Powercast harvesters and simulations using the energy model of our Libelium Waspmote to verify the approach were performed. The chapter concludes with performance analysis of the harvested energy, comparison of IEEABR and other traditional energy management techniques, while also looking at open research areas of energy harvesting and management for wireless sensor networks.Comment: 40 pages, 9 figures, 5 tables, Book chapte

    Power Management Strategies in Energy-Harvesting Wireless Sensor Networks

    Get PDF
    Power management strategies are extremely important in Wireless Sensor Networks (WSNs). The objective is to make the nodes operate as long as possible. In the same context, in this article, our aim is to provide the optimal transmission power to maximize the network lifetime using the Orthogonal Multiple Access Channel (OMAC) in Harvesting System (HS). We consider that the nodes have direct communication with a Fusion Center (FC) with causal Channel Side Information (CSI) at the sender and receiver.We begin the analysis by considering a single transmitter node powered by a rechargeable battery with limited capacity energy. Afterward, we generalize the analysis with M transmitter nodes. In both cases, the transmitters are able to harvest energy from nature.Eventually, we show the viability of our approach in simulations results

    Design and Development of an RF Energy Harvesting Wireless Sensor Node (EH-WSN) for Aerospace Applications

    Get PDF
    AbstractNumerous applications of wireless sensor networks are constrained by the limited battery power of the sensors. The power consumption of processors and microcontrollers could be scaled down dramatically with the new advances in microelectronics. This reduction gives rise to the possibility of energy harvesting sources to power wireless sensor nodes. In this paper a summary is given of our ongoing research work on RF Energy Harvesting Wireless Sensor Node (EH-WSN) which can plug-in to the already developed Wireless Instrumentation System (WIS) for aerospace applications. Present WSN's which are powered from battery have limited operational lifetime. While energy harvesting has the potential to enable near-perpetual system operation, design of which is a complex trade-off due to the interaction of numerous factors such as the characteristics of the energy source, power supply requirements, power management futures, WSN application behaviour, chemistry and capacity of batteries used etc. In this work, we have identified a suitable power harvesting cum battery management scheme which harvests power consistently and deterministically from a secondary RF source which can be used even in harsh real-time applications. Using a RF power harvesting receiver IC and a compact power management cum storage circuit, we establish the test bed and conduct a series of experiments to verify the effectiveness of the proposed scheme. We have demonstrated continuous operation of the sensor node at an operating distance of 2 meters from the RF power source for a data rate of 240 sps. This is achieved by using special synchronized MAC protocol, low power techniques, usage of low leakage components and systematic coding of the micro controller firmware. This paper provides an insight into how various power reduction techniques can be used and orchestrated such that satisfactory performance can be achieved for a given energy budget

    RF Energy Harvesting Wireless Networks: Challenges And Opportunities

    Get PDF
    Energy harvesting wireless networks is one of the most researched topics in this decade, both in industry and academia, as it can offer self-sustaining sensor networks. With RF energy harvesting (RF-EH) embedded, the sensors can operate for extended periods by harvesting energy from the environment or by receiving it as an Energy signal from a hybrid base station (HBS). Thus, providing sustainable solutions for managing massive numbers of sensor nodes. However, the biggest hurdle of RF energy is the low energy density due to spreading loss. This paper investigates the RF-EH node hardware and design essentials, performance matrices of RF-EH. Power management in energy harvesting nodes is discussed. Furthermore, an information criticality algorithm is proposed for critical and hazardous use cases. Finally, some of the RF-EH applications and the opportunities of 5G technologies for the RF-EH are introduced

    Wireless sensor networks with energy harvesting: Modeling and simulation based on a practical architecture using real radiation levels

    Full text link
    This paper presents a new energy-harvesting model for a network simulator that implements super-capacitor energy storage with solar energy-harvesting recharge. The model is easily extensible, and other energyharvesting systems, or different energy storages, can be further developed. Moreover, code can be conveniently reused as the implementation is entirely uncoupled from the radio and node models. Real radiation data are obtained from available online databases in order to dynamically calculate super-capacitor charge and discharge. Such novelty enables the evaluation of energy evolution on a network of sensor nodes at various physical world locations and during different seasons. The model is validated against a real and fully working prototype, and good result correlation is shown. Furthermore, various experiments using the ns-3 simulator were conducted, demonstrating the utility of the model in assisting the research and development of the deployment of everlasting wireless sensor networks.This work was supported by the CICYT (research projects CTM2011-29691-C02-01 and TIN2011-28435-C03-01) and UPV research project SP20120889.Climent, S.; Sánchez Matías, AM.; Blanc Clavero, S.; Capella Hernández, JV.; Ors Carot, R. (2013). Wireless sensor networks with energy harvesting: Modeling and simulation based on a practical architecture using real radiation levels. Concurrency and Computation: Practice and Experience. 1-19. https://doi.org/10.1002/cpe.3151S119Akyildiz, I. F., & Vuran, M. C. (2010). Wireless Sensor Networks. doi:10.1002/9780470515181Seah, W. K. G., Tan, Y. K., & Chan, A. T. S. (2012). Research in Energy Harvesting Wireless Sensor Networks and the Challenges Ahead. Autonomous Sensor Networks, 73-93. doi:10.1007/5346_2012_27Vullers, R., Schaijk, R., Visser, H., Penders, J., & Hoof, C. (2010). Energy Harvesting for Autonomous Wireless Sensor Networks. IEEE Solid-State Circuits Magazine, 2(2), 29-38. doi:10.1109/mssc.2010.936667Ammar, Y., Buhrig, A., Marzencki, M., Charlot, B., Basrour, S., Matou, K., & Renaudin, M. (2005). Wireless sensor network node with asynchronous architecture and vibration harvesting micro power generator. Proceedings of the 2005 joint conference on Smart objects and ambient intelligence innovative context-aware services: usages and technologies - sOc-EUSAI ’05. doi:10.1145/1107548.1107618Vijayaraghavan, K., & Rajamani, R. (2007). Active Control Based Energy Harvesting for Battery-Less Wireless Traffic Sensors. 2007 American Control Conference. doi:10.1109/acc.2007.4282842Bottner, H., Nurnus, J., Gavrikov, A., Kuhner, G., Jagle, M., Kunzel, C., … Schlereth, K.-H. (2004). New thermoelectric components using microsystem technologies. Journal of Microelectromechanical Systems, 13(3), 414-420. doi:10.1109/jmems.2004.828740Mateu L Codrea C Lucas N Pollak M Spies P Energy harvesting for wireless communication systems using thermogenerators Conference on Design of Circuits and Integrated Systems (DCIS) 2006AEMet Agencia Estatal de Meteorolgía 2013 http//www.aemet.esPANGAEA Data Publisher for Earth & Environmental Science 2013 http://www.pangaea.de/Zeng, K., Ren, K., Lou, W., & Moran, P. J. (2007). Energy aware efficient geographic routing in lossy wireless sensor networks with environmental energy supply. Wireless Networks, 15(1), 39-51. doi:10.1007/s11276-007-0022-0Hasenfratz, D., Meier, A., Moser, C., Chen, J.-J., & Thiele, L. (2010). Analysis, Comparison, and Optimization of Routing Protocols for Energy Harvesting Wireless Sensor Networks. 2010 IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing. doi:10.1109/sutc.2010.35Noh, D. K., & Hur, J. (2012). Using a dynamic backbone for efficient data delivery in solar-powered WSNs. Journal of Network and Computer Applications, 35(4), 1277-1284. doi:10.1016/j.jnca.2012.01.012Lin, L., Shroff, N. B., & Srikant, R. (2007). Asymptotically Optimal Energy-Aware Routing for Multihop Wireless Networks With Renewable Energy Sources. IEEE/ACM Transactions on Networking, 15(5), 1021-1034. doi:10.1109/tnet.2007.896173Ferry, N., Ducloyer, S., Julien, N., & Jutel, D. (2011). Power/Energy Estimator for Designing WSN Nodes with Ambient Energy Harvesting Feature. EURASIP Journal on Embedded Systems, 2011(1), 242386. doi:10.1155/2011/242386Glaser, J., Weber, D., Madani, S., & Mahlknecht, S. (2008). Power Aware Simulation Framework for Wireless Sensor Networks and Nodes. EURASIP Journal on Embedded Systems, 2008(1), 369178. doi:10.1155/2008/369178De Mil, P., Jooris, B., Tytgat, L., Catteeuw, R., Moerman, I., Demeester, P., & Kamerman, A. (2010). Design and Implementation of a Generic Energy-Harvesting Framework Applied to the Evaluation of a Large-Scale Electronic Shelf-Labeling Wireless Sensor Network. EURASIP Journal on Wireless Communications and Networking, 2010(1). doi:10.1155/2010/343690Castagnetti, A., Pegatoquet, A., Belleudy, C., & Auguin, M. (2012). A framework for modeling and simulating energy harvesting WSN nodes with efficient power management policies. EURASIP Journal on Embedded Systems, 2012(1). doi:10.1186/1687-3963-2012-8Alippi, C., & Galperti, C. (2008). An Adaptive System for Optimal Solar Energy Harvesting in Wireless Sensor Network Nodes. IEEE Transactions on Circuits and Systems I: Regular Papers, 55(6), 1742-1750. doi:10.1109/tcsi.2008.922023Xiaofan Jiang, Polastre, J., & Culler, D. (s. f.). Perpetual environmentally powered sensor networks. IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005. doi:10.1109/ipsn.2005.1440974Simjee, F., & Chou, P. H. (2006). Everlast. Proceedings of the 2006 international symposium on Low power electronics and design - ISLPED ’06. doi:10.1145/1165573.1165619Sánchez, A., Climent, S., Blanc, S., Capella, J. V., & Piqueras, I. (2011). WSN with energy-harvesting. Proceedings of the 6th ACM workshop on Performance monitoring and measurement of heterogeneous wireless and wired networks - PM2HW2N ’11. doi:10.1145/2069087.2069091Renner C Jessen J Turau V Lifetime prediction for supercapacitor-powered wireless sensor nodes Proc. of the 8th GI/ITG KuVS Fachgesprächİ Drahtlose Sensornetze(FGSN09) 2009TI Analog, Embedded Processing, Semiconductor Company, Texas Instruments 2013 http//www.ti.comWSNVAL Wireless Sensor Networks Valencia 2013 www.wsnval.comSanchez, A., Blanc, S., Yuste, P., & Serrano, J. J. (2011). RFID Based Acoustic Wake-Up System for Underwater Sensor Networks. 2011 IEEE Eighth International Conference on Mobile Ad-Hoc and Sensor Systems. doi:10.1109/mass.2011.103Fan, K.-W., Zheng, Z., & Sinha, P. (2008). Steady and fair rate allocation for rechargeable sensors in perpetual sensor networks. Proceedings of the 6th ACM conference on Embedded network sensor systems - SenSys ’08. doi:10.1145/1460412.1460436Moser, C., Thiele, L., Brunelli, D., & Benini, L. (2010). Adaptive Power Management for Environmentally Powered Systems. IEEE Transactions on Computers, 59(4), 478-491. doi:10.1109/tc.2009.15

    Autonomous Energy Management system achieving piezoelectric energy harvesting in Wireless Sensors

    Get PDF
    International audienceWireless Sensor Networks (WSNs) are extensively used in monitoring applications such as humidity and temperature sensing in smart buildings, industrial automation, and predicting crop health. Sensor nodes are deployed in remote places to sense the data information from the environment and to transmit the sensing data to the Base Station (BS). When a sensor is drained of energy, it can no longer achieve its role without a substituted source of energy. However, limited energy in a sensor's battery prevents the long-term process in such applications. In addition, replacing the sensors' batteries and redeploying the sensors is very expensive in terms of time and budget. To overcome the energy limitation without changing the size of sensors, researchers have proposed the use of energy harvesting to reload the rechargeable battery by power. Therefore, efficient power management is required to increase the benefits of having additional environmental energy. This paper presents a new self-management of energy based on Proportional Integral Derivative controller (PID) to tune the energy harvesting and Microprocessor Controller Unit (MCU) to control the sensor modes

    Energy neutral operation of vibration energy-harvesting sensor networks for bridge applications

    Get PDF
    greatly benefit from the use of wireless sensor networks (WSNs), however energy harvesting for the operation of the network remains a challenge in this setting. While solar and wind power are possible and credible solutions to energy generation, the need for positioning sensor nodes in shaded and sheltered locations, e.g., under a bridge deck, is also often precluding their adoption in real-world deployments. In some scenarios vibration energy harvesting has been shown as an effective solution, instead. This paper presents a multihop vibration energy-harvesting WSN system for bridge applications. The system relies on an ultra-low power wireless sensor node, driven by a novel vibration based energy-harvesting technology. We use a receiver-initiated routing protocol to enable energy-efficient and reliable connectivity between nodes with different energy charging capabilities. By combining real vibration data with an experimentally validated model of the vibration energy harvester, a hardware model, and the COOJA simulator, we develop a framework to conduct realistic and repeatable experiments to evaluate the system before on-site deployment. Simulation results show that the system is able to maintain energy neutral operation, preserving energy with careful management of sleep and communication times. We also validate the system through a laboratory experiment on real hardware against real vibration data collected from a bridge. Besides providing general guidelines and considerations for the development of vibration energy-harvesting systems for bridge applications, this work highlights the limitations of the energy budget made available by traffic-induced vibrations, which clearly shrink the applicability of vibration energy-harvesting technology for WSNs to applications that do not generate an overwhelming amounts of data

    Sustainable Traffic Aware Duty-Cycle Adaptation in Harvested Multi-Hop Wireless Sensor Networks

    No full text
    International audienceSustainable power management techniques in energy harvesting wireless sensors currently adapt the consumption of sensors to their harvesting rate within the limits of their battery residual energy, but regardless of the traffic profile. To provide a fairer distribution of the energy according to application needs, we propose a new sustainable traffic aware duty-cycle adaptation scheme (STADA) that takes into account the traffic load in addition to previous factors. We evaluate our protocol in the specific context of multi-hop IEEE 802.15.4 beacon-enabled wireless sensor networks powered by solar energy. Simulations show that our solution outperforms traffic-unaware adaptation schemes while minimizing the variance of the quality of service provided to applications

    Optimal Sensing and Transmission in Energy Harvesting Sensor Networks

    Get PDF
    Sensor networks equipped with energy harvesting (EH) devices have attracted great attentions recently. Compared with conventional sensor networks powered by batteries, the energy harvesting abilities of the sensor nodes make sustainable and environment-friendly sensor networks possible. However, the random, scarce and non-uniform energy supply features also necessitate a completely different approach to energy management. A typical EH wireless sensor node consists of an EH module that converts ambient energy to electrical energy, which is stored in a rechargeable battery, and will be used to power the sensing and transmission operations of the sensor. Therefore, both sensing and transmission are subject to the stochastic energy constraint imposed by the EH process. In this dissertation, we investigate optimal sensing and transmission policies for EH sensor networks under such constraints. For EH sensing, our objective is to understand how the temporal and spatial variabilities of the EH processes would affect the sensing performance of the network, and how sensor nodes should coordinate their data collection procedures with each other to cope with the random and non-uniform energy supply and provide reliable sensing performance with analytically provable guarantees. Specifically, we investigate optimal sensing policies for a single sensor node with infinite and finite battery sizes in Chapter 2, status updating/transmission strategy of an EH Source in Chapter 3, and a collaborative sensing policy for a multi-node EH sensor network in Chapter 4. For EH communication, our objective is to evaluate the impacts of stochastic variability of the EH process and practical battery usage constraint on the EH systems, and develop optimal transmission policies by taking such impacts into consideration. Specifically, we consider throughput optimization in an EH system under battery usage constraint in Chapter 5
    • …
    corecore