164,407 research outputs found

    Dynamic Exploration of Networks: from general principles to the traceroute process

    Full text link
    Dynamical processes taking place on real networks define on them evolving subnetworks whose topology is not necessarily the same of the underlying one. We investigate the problem of determining the emerging degree distribution, focusing on a class of tree-like processes, such as those used to explore the Internet's topology. A general theory based on mean-field arguments is proposed, both for single-source and multiple-source cases, and applied to the specific example of the traceroute exploration of networks. Our results provide a qualitative improvement in the understanding of dynamical sampling and of the interplay between dynamics and topology in large networks like the Internet.Comment: 13 pages, 6 figure

    The evolution of HI and CIV quasar absorption line systems at 1.9 < z < 3.2

    Full text link
    We have investigated the distribution and evolution of ~3100 intergalactic HI absorbers with HI column densities log N(HI) = [12.75, 17.0] at 1.9 < z < 3.2, using 18 high resolution, high S/N quasar spectra obtained from the ESO VLT/UVES archive. We used two sets of Voigt profile fitting analysis, one including all the available high-order Lyman lines to obtain reliable HI column densities of saturated lines, and another using only the Ly-alpha lines. There is no significant difference between the results from the two fits. Combining our results with literature data, the mean number density at 0 < z < 4 is not well described by a single power law and strongly suggests that its evolution slows down at z < 1.5 at the high and low column density ranges. We also divided our entire HI absorbers at 1.9 < z < 3.2 into two samples, the unenriched forest and the CIV-enriched forest, depending on whether HI lines are associated with CIV at log N(CIV) > 12.2 within a given velocity range. The entire HI column density distribution function (CDDF) can be described as the combination of these two well-characterised populations which overlap at log N(HI) ~ 15. At log N(HI) < 15, the unenriched forest dominates, showing a similar power-law distribution to the entire forest. The CIV-enriched forest dominates at log N(HI) > 15, with its distribution function proportional to N(HI)^(-1.45). However, it starts to flatten out at lower N(HI), since the enriched forest fraction decreases with decreasing N(HI). The deviation from the power law at log N(HI) = [14, 17] shown in the CDDF for the entire HI sample is a result of combining two different HI populations with a different CDDF shape. The total HI mass density relative to the critical density is Omega(HI) ~ 1.6 x 10^(-6) h^(-1), where the enriched forest accounts for ~40% of Omega(HI).Comment: 26 pages, 20 figures, accepted for AA, in pres

    Differential Evolution for Many-Particle Adaptive Quantum Metrology

    Get PDF
    We devise powerful algorithms based on differential evolution for adaptive many-particle quantum metrology. Our new approach delivers adaptive quantum metrology policies for feedback control that are orders-of-magnitude more efficient and surpass the few-dozen-particle limitation arising in methods based on particle-swarm optimization. We apply our method to the binary-decision-tree model for quantum-enhanced phase estimation as well as to a new problem: a decision tree for adaptive estimation of the unknown bias of a quantum coin in a quantum walk and show how this latter case can be realized experimentally.Comment: Fig. 2(a) is the cover of Physical Review Letters Vol. 110 Issue 2

    The X-ray Luminosity Function of Nearby Rich and Poor Clusters of Galaxies: A Cosmological Probe

    Get PDF
    In this letter, we present a new determination of the local (z<0.09) X-ray luminosity function (XLF) using a large, statistical sample of 294 Abell clusters and the ROSAT All-Sky-Survey. Given our large sample size, we have reduced errors by a factor of two for L(X)(0.5-2keV)>10^43 ergs/sec. We combine our data with previous work in order to explore possible constraints imposed by the shape of the XLF on cosmological models. A set of currently viable cosmologies is used to construct theoretical XLFs assuming Lx is proportional to M^p and a sigma_8-Omega_0 constraint (from Viana & Liddle 1996) based on the local X-ray temperature function. We fit these models to our observed XLF and verify that the simplest adiabatic, analytic scaling relation (e.g. Kaiser 1986) disagrees strongly with observations. If we assume that clusters can be described by the pre-heated, constant core-entropy models of Evrard & Henry (1991) then the observed XLF is consistent only with 0.1 < Omega_0 < 0.4 if the energy per unit mass in galaxies is roughly equal to the gas energy (ie if beta=1). (abridged)Comment: 4 pages, 2 figures, accepted for publication in ApJ Letters. uses emulateapj.st

    The ROSAT Deep Cluster Survey: the X-ray Luminosity Function out to z=0.8

    Get PDF
    We present the X-ray Luminosity Function (XLF) of the ROSAT Deep Cluster Survey (RDCS) sample over the redshift range 0.05-0.8. Our results are derived from a complete flux-limited subsample of 70 galaxy clusters, representing the brightest half of the total sample, which have been spectroscopically identified down to the flux limit of 4*10^{-14} erg/cm^2/s (0.5-2.0 keV) and have been selected via a serendipitous search in ROSAT-PSPC pointed observations. The redshift baseline is large enough that evolutionary effects can be studied within the sample. The local XLF (z < 0.25) is found to be in excellent agreement with previous determinations using the ROSAT All-Sky Survey data. The XLF at higher redshifts, when combined with the deepest number counts constructed to date (f>2*10^{-14} arg/cm^2/s), reveal no significant evolution at least out to z=0.8, over a luminosity range 2*10^{42}-3*10^{44} erg/s in the [0.5-2 keV] band. These findings extend the study of cluster evolution to the highest redshifts and the faintest fluxes probed so far in X-ray surveys. They complement and do not necessarily conflict with those of the Einstein Extended Medium Sensitivity Survey, leaving the possibility of negative evolution of the brightest end of the XLF at high redshifts.Comment: 12 pages, 4 figures, LaTeX (aasms4.sty). To appear in ApJ Letter

    A Search for Dark Matter Annihilation with the Whipple 10m Telescope

    Get PDF
    We present observations of the dwarf galaxies Draco and Ursa Minor, the local group galaxies M32 and M33, and the globular cluster M15 conducted with the Whipple 10m gamma-ray telescope to search for the gamma-ray signature of self-annihilating weakly interacting massive particles (WIMPs) which may constitute astrophysical dark matter (DM). We review the motivations for selecting these sources based on their unique astrophysical environments and report the results of the data analysis which produced upper limits on excess rate of gamma rays for each source. We consider models for the DM distribution in each source based on the available observational constraints and discuss possible scenarios for the enhancement of the gamma-ray luminosity. Limits on the thermally averaged product of the total self-annihilation cross section and velocity of the WIMP, , are derived using conservative estimates for the magnitude of the astrophysical contribution to the gamma-ray flux. Although these limits do not constrain predictions from the currently favored theoretical models of supersymmetry (SUSY), future observations with VERITAS will probe a larger region of the WIMP parameter phase space, and WIMP particle mass (m_\chi).Comment: 33 pages, 12 figures, accepted for publication in the Astrophysical Journa
    corecore