523 research outputs found

    An overview of grid-edge control with the digital transformation

    Get PDF
    Distribution networks are evolving to become more responsive with increasing integration of distributed energy resources (DERs) and digital transformation at the grid edges. This evolution imposes many challenges to the operation of the network, which then calls for new control and operation paradigms. Among others, a so-called grid-edge control is emerging to harmonise the coexistence of the grid control system and DER’s autonomous control. This paper provides a comprehensive overview of the grid-edge control with various control architectures, layers, and strategies. The challenges and opportunities for such an approach at the grid edge with the integration of DERs and digital transformation are summarised. The potential solutions to support the network operation by using the inherent controllability of DER and the availability of the digital transformation at the grid edges are discussed

    Advanced Solutions for Renewable Energy Integration into the Grid Addressing Intermittencies, Harmonics and Inertial Response

    Get PDF
    Numerous countries are trying to reach almost 100\% renewable penetration. Variable renewable energy (VRE), for instance wind and PV, will be the main provider of the future grid. The efforts to decrease the greenhouse gasses are promising on the current remarkable growth of grid connected photovoltaic (PV) capacity. This thesis provides an overview of the presented techniques, standards and grid interface of the PV systems in distribution and transmission level. This thesis reviews the most-adopted grid codes which required by system operators on large-scale grid connected Photovoltaic systems. The adopted topologies of the converters, the control methodologies for active - reactive power, maximum power point tracking (MPPT), as well as their arrangement in solar farms are studied. The unique L(LCL)2 filter is designed, developed and introduced in this thesis. This study will help researchers and industry users to establish their research based on connection requirements and compare between different existing technologies. Another, major aspect of the work is the development of Virtual Inertia Emulator (VIE) in the combination of hybrid energy storage system addressing major challenges with VRE implementations. Operation of a photovoltaic (PV) generating system under intermittent solar radiation is a challenging task. Furthermore, with high-penetration levels of photovoltaic energy sources being integrated into the current electric power grid, the performance of the conventional synchronous generators is being changed and grid inertial response is deteriorating. From an engineering standpoint, additional technical measures by the grid operators will be done to confirm the increasingly strict supply criteria in the new inverter dominated grid conditions. This dissertation proposes a combined virtual inertia emulator (VIE) and a hybrid battery-supercapacitor-based energy storage system . VIE provides a method which is based on power devices (like inverters), which makes a compatible weak grid for integration of renewable generators of electricity. This method makes the power inverters behave more similar to synchronous machines. Consequently, the synchronous machine properties, which have described the attributes of the grid up to now, will remain active, although after integration of renewable energies. Examples of some of these properties are grid and generator interactions in the function of a remote power dispatch, transients reactions, and the electrical outcomes of a rotating bulk mass. The hybrid energy storage system (HESS) is implemented to smooth the short-term power fluctuations and main reserve that allows renewable electricity generators such as PV to be considered very closely like regular rotating power generators. The objective of utilizing the HESS is to add/subtract power to/from the PV output in order to smooth out the high frequency fluctuations of the PV power, which may occur due to shadows of passing cloud on the PV panels. A control system designed and challenged by providing a solution to reduce short-term PV output variability, stabilizing the DC link voltage and avoiding short term shocks to the battery in terms of capacity and ramp rate capability. Not only could the suggested system overcome the slow response of battery system (including dynamics of battery, controller, and converter operation) by redirecting the power surges to the supercapacitor system, but also enhance the inertial response by emulating the kinetic inertia of synchronous generator

    A Novel Control Method For Grid Side Inverters Under Generalized Unbalanced Operating Conditions

    Get PDF
    This thesis provides a summary on renewable energy sources integration into the grid, using an inverter, along with a comprehensive literature research on variety of available control methods. A new generalized method for grid side inverter control under unbalanced operating conditions is also proposed. The presented control method provides complete harmonic elimination in line currents and DC link voltage with adjustable power factor. The method is general, and can be used for all levels of imbalance in grid voltages and line impedances. The control algorithm proposed in this work has been implemented by using MATLAB Simulink and dSPACE RT1104 control system. Simulation and experimental results presented in this thesis are in excellent agreement

    Data-Driven Distributed Modeling, Operation, and Control of Electric Power Distribution Systems

    Get PDF
    The power distribution system is disorderly in design and implementation, chaotic in operation, large in scale, and complex in every way possible. Therefore, modeling, operating, and controlling the distribution system is incredibly challenging. It is required to find solutions to the multitude of challenges facing the distribution grid to transition towards a just and sustainable energy future for our society. The key to addressing distribution system challenges lies in unlocking the full potential of the distribution grid. The work in this dissertation is focused on finding methods to operate the distribution system in a reliable, cost-effective, and just manner. In this PhD dissertation, a new data-driven distributed (D3MD^3M) framework using cellular computational networks has been developed to model power distribution systems. Its performance is validated on an IEEE test case. The results indicate a significant enhancement in accuracy and performance compared to the state-of-the-art centralized modeling approach. This dissertation also presents a new distributed and data-driven optimization method for volt-var control in power distribution systems. The framework is validated for voltage control on an IEEE test feeder. The results indicate that the system has improved performance compared to the state-of-the-art approach. The PhD dissertation also presents a design for a real-time power distribution system testbed. A new data-in-the-loop (DIL) simulation method has been developed and integrated into the testbed. The DIL method has been used to enhance the quality of the real-time simulations. The assets combined with the testbed include data, control, and hardware-in-the-loop infrastructure. The testbed is used to validate the performance of a distribution system with significant penetration of distributed energy resources

    Development of economically viable, highly integrated, highly modular SEGIS architecture.

    Full text link

    Requirements for Power Hardware-in-the-Loop Emulation of Distribution Grid Challenges

    Get PDF
    The ongoing transition of low voltage (LV) power grids towards active systems requires novel evaluation and testing concepts, in particular for realistic testing of devices. Power Hardware-in-the-Loop (PHIL) evaluations are a promising approach for this purpose. This paper presents preliminary investigations addressing the systematic design of PHIL applications and their applicable stability mechanisms and gives a detailed review of the related work. A requirement analysis for emulation of grid situations demanding system services is given and the realization of a PHIL setup is demonstrated in a residential scenario, comprising a hybrid electrical energy storage system (HESS)
    corecore