1,413,478 research outputs found

    Multi-kw dc power distribution system study program

    Get PDF
    The first phase of the Multi-kw dc Power Distribution Technology Program is reported and involves the test and evaluation of a technology breadboard in a specifically designed test facility according to design concepts developed in a previous study on space vehicle electrical power processing, distribution, and control. The static and dynamic performance, fault isolation, reliability, electromagnetic interference characterisitics, and operability factors of high distribution systems were studied in order to gain a technology base for the use of high voltage dc systems in future aerospace vehicles. Detailed technical descriptions are presented and include data for the following: (1) dynamic interactions due to operation of solid state and electromechanical switchgear; (2) multiplexed and computer controlled supervision and checkout methods; (3) pulse width modulator design; and (4) cable design factors

    Options for Control of Reactive Power by Distributed Photovoltaic Generators

    Full text link
    High penetration levels of distributed photovoltaic(PV) generation on an electrical distribution circuit present several challenges and opportunities for distribution utilities. Rapidly varying irradiance conditions may cause voltage sags and swells that cannot be compensated by slowly responding utility equipment resulting in a degradation of power quality. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We discuss and compare via simulation various design options for control systems to manage the reactive power generated by these inverters. An important design decision that weighs on the speed and quality of communication required is whether the control should be centralized or distributed (i.e. local). In general, we find that local control schemes are capable for maintaining voltage within acceptable bounds. We consider the benefits of choosing different local variables on which to control and how the control system can be continuously tuned between robust voltage control, suitable for daytime operation when circuit conditions can change rapidly, and loss minimization better suited for nighttime operation.Comment: 8 pages, 8 figure

    Design of Optimum Torsionally Flexible PropRotors for Tilt-Body MAVs

    Get PDF
    This paper presents a methodology to design the optimum proprotor for tilt-body microair-vehicles (TB-MAV) with efficient global propulsion system and long flight endurance in both cruise and hover modes. The TB-MAV developed at ISAE, which is called MAVion, was used as a baseline in the design process. To acquire maximum performance of TB-MAV’s global propulsion system, an efficient optimization process of the proprotor propulsion system was carried out. The optimization process consists of two-step inverse design methods. The first step determines the optimal operating conditions in terms of power and rotational speed of proprotor and the second step designs the optimal blade geometry in terms of twist angle distribution. The optimal blade twist distribution along the blade was computed using the Glauert’s strip theory for minimum energy loss condition. Meanwhile, the optimal operating conditions were determined by the motor outputs corresponding to high motor efficiency. A comparison of performance in terms of total efficiency and flight endurance between the optimized flexible proprotor, the optimized rigid proprotor, optimized propeller and optimized rotor is presented

    An improved instruction-level power model for ARM11 microprocessor

    No full text
    The power and energy consumed by a chip has become the primary design constraint for embedded systems, which has led to a lot of work in hardware design techniques such as clock gating and power gating. The software can also affect the power usage of a chip, hence good software design can be used to reduce the power further. In this paper we present an instruction-level power model based on an ARM1176JZF-S processor to predict the power of software applications. Our model takes substantially less input data than existing high accuracy models and does not need to consider each instruction individually. We show that the power is related to both the distribution of instruction types and the operations per clock cycle (OPC) of the program. Our model does not need to consider the effect of two adjacent instructions, which saves a lot of calculation and measurements. Pipeline stall effects are also considered by OPC instead of cache miss, because there are a lot of other reasons that can cause the pipeline to stall. The model shows good performance with a maximum estimation error of -8.28\% and an average absolute estimation error is 4.88\% over six benchmarks. Finally, we prove that energy per operation (EPO) decreases with increasing operations per clock cycle, and we confirm the relationship empirically

    An Area Efficient Pulse Triggered Flipflop Design under 90nm CMOS Technology

    Get PDF
    The choice of flip-flop technologies is an essential importance in design of VLSI integrated circuits for high speed and high performance CMOS circuits. The main objective of this project is to design an area efficient Low-Power Pulse- Triggered flip-flop. It is important to reduce the power dissipation in both clock distribution networks and flip-flops. The comparison of low power pulse triggered flip-flops such as Ep-DCO, MHLFF, ACFF, Ip-DCO, conditional enhancement scheme and signal feed through scheme. Logics are carried out and the best power-performance is obtained. Here simulations are done under 90nm technology and the results are tabulated below. In that signal feed through scheme is showing better output than the other flip-flops compared here

    Status of a Power Processor for the Prometheus-1 Electric Propulsion System

    Get PDF
    NASA is developing technologies for nuclear electric propulsion for proposed deep space missions in support of the Exploration initiative under Project Prometheus. Electrical power produced by the combination of a fission-based power source and a Brayton power conversion and distribution system is used by a high specific impulse ion propulsion system to propel the spaceship. The ion propulsion system include the thruster, power processor and propellant feed system. A power processor technology development effort was initiated under Project Prometheus to develop high performance and lightweight power-processing technologies suitable for the application. This effort faces multiple challenges including developing radiation hardened power modules and converters with very high power capability and efficiency to minimize the impact on the power conversion and distribution system as well as the heat rejection system. This paper documents the design and test results of the first version of the beam supply, the design of a second version of the beam supply and the design and test results of the ancillary supplies

    Thermal design and characterization of a modular integrated liquid cooled 1200 V-35 A SiC MOSFET bi-directional switch

    Get PDF
    The aim of this work is the thermal design of a modular direct liquid cooled package for 1200 V–35 A SiC power MOSFETs, in order to take full advantage of the high power density and high frequency performance of these devices, in the development of a modular integrated solution for power converters. An accurate electro-thermal fluid dynamic model is set up and validated by thermal characterization on a prototype; numerical models have been used to study the internal temperature distribution and to propose further optimization
    • …
    corecore