5,116 research outputs found

    Stability and Distributed Power Control in MANETs with Outages and Retransmissions

    Full text link
    In the current work the effects of hop-by-hop packet loss and retransmissions via ARQ protocols are investigated within a Mobile Ad-hoc NET-work (MANET). Errors occur due to outages and a success probability function is related to each link, which can be controlled by power and rate allocation. We first derive the expression for the network's capacity region, where the success function plays a critical role. Properties of the latter as well as the related maximum goodput function are presented and proved. A Network Utility Maximization problem (NUM) with stability constraints is further formulated which decomposes into (a) the input rate control problem and (b) the scheduling problem. Under certain assumptions problem (b) is relaxed to a weighted sum maximization problem with number of summants equal to the number of nodes. This further allows the formulation of a non-cooperative game where each node decides independently over its transmitting power through a chosen link. Use of supermodular game theory suggests a price based algorithm that converges to a power allocation satisfying the necessary optimality conditions of (b). Implementation issues are considered so that minimum information exchange between interfering nodes is required. Simulations illustrate that the suggested algorithm brings near optimal results.Comment: 25 pages, 6 figures, 1 table, submitted to the IEEE Trans. on Communication

    Utility Optimal Scheduling and Admission Control for Adaptive Video Streaming in Small Cell Networks

    Full text link
    We consider the jointly optimal design of a transmission scheduling and admission control policy for adaptive video streaming over small cell networks. We formulate the problem as a dynamic network utility maximization and observe that it naturally decomposes into two subproblems: admission control and transmission scheduling. The resulting algorithms are simple and suitable for distributed implementation. The admission control decisions involve each user choosing the quality of the video chunk asked for download, based on the network congestion in its neighborhood. This form of admission control is compatible with the current video streaming technology based on the DASH protocol over TCP connections. Through simulations, we evaluate the performance of the proposed algorithm under realistic assumptions for a small-cell network.Comment: 5 pages, 4 figures. Accepted and will be presented at IEEE International Symposium on Information Theory (ISIT) 201

    Energy-Efficient Resource Management in Ultra Dense Small Cell Networks: A Mean-Field Approach

    Full text link
    In this paper, a novel approach for joint power control and user scheduling is proposed for optimizing energy efficiency (EE), in terms of bits per unit power, in ultra dense small cell networks (UDNs). To address this problem, a dynamic stochastic game (DSG) is formulated between small cell base stations (SBSs). This game enables to capture the dynamics of both queues and channel states of the system. To solve this game, assuming a large homogeneous UDN deployment, the problem is cast as a mean field game (MFG) in which the MFG equilibrium is analyzed with the aid of two low-complexity tractable partial differential equations. User scheduling is formulated as a stochastic optimization problem and solved using the drift plus penalty (DPP) approach in the framework of Lyapunov optimization. Remarkably, it is shown that by weaving notions from Lyapunov optimization and mean field theory, the proposed solution yields an equilibrium control policy per SBS which maximizes the network utility while ensuring users' quality-of-service. Simulation results show that the proposed approach achieves up to 18:1% gains in EE and 98.2% reductions in the network's outage probability compared to a baseline model.Comment: 6 pages, 7 figures, GLOBECOM 2015 (published

    Ultra Dense Small Cell Networks: Turning Density into Energy Efficiency

    Full text link
    In this paper, a novel approach for joint power control and user scheduling is proposed for optimizing energy efficiency (EE), in terms of bits per unit energy, in ultra dense small cell networks (UDNs). Due to severe coupling in interference, this problem is formulated as a dynamic stochastic game (DSG) between small cell base stations (SBSs). This game enables to capture the dynamics of both the queues and channel states of the system. To solve this game, assuming a large homogeneous UDN deployment, the problem is cast as a mean-field game (MFG) in which the MFG equilibrium is analyzed with the aid of low-complexity tractable partial differential equations. Exploiting the stochastic nature of the problem, user scheduling is formulated as a stochastic optimization problem and solved using the drift plus penalty (DPP) approach in the framework of Lyapunov optimization. Remarkably, it is shown that by weaving notions from Lyapunov optimization and mean-field theory, the proposed solution yields an equilibrium control policy per SBS which maximizes the network utility while ensuring users' quality-of-service. Simulation results show that the proposed approach achieves up to 70.7% gains in EE and 99.5% reductions in the network's outage probabilities compared to a baseline model which focuses on improving EE while attempting to satisfy the users' instantaneous quality-of-service requirements.Comment: 15 pages, 21 figures (sub-figures are counted separately), IEEE Journal on Selected Areas in Communications - Series on Green Communications and Networking (Issue 2
    • …
    corecore