2,285 research outputs found

    A Review of the Energy Efficient and Secure Multicast Routing Protocols for Mobile Ad hoc Networks

    Full text link
    This paper presents a thorough survey of recent work addressing energy efficient multicast routing protocols and secure multicast routing protocols in Mobile Ad hoc Networks (MANETs). There are so many issues and solutions which witness the need of energy management and security in ad hoc wireless networks. The objective of a multicast routing protocol for MANETs is to support the propagation of data from a sender to all the receivers of a multicast group while trying to use the available bandwidth efficiently in the presence of frequent topology changes. Multicasting can improve the efficiency of the wireless link when sending multiple copies of messages by exploiting the inherent broadcast property of wireless transmission. Secure multicast routing plays a significant role in MANETs. However, offering energy efficient and secure multicast routing is a difficult and challenging task. In recent years, various multicast routing protocols have been proposed for MANETs. These protocols have distinguishing features and use different mechanismsComment: 15 page

    RTXP : A Localized Real-Time Mac-Routing Protocol for Wireless Sensor Networks

    Get PDF
    Protocols developed during the last years for Wireless Sensor Networks (WSNs) are mainly focused on energy efficiency and autonomous mechanisms (e.g. self-organization, self-configuration, etc). Nevertheless, with new WSN applications, appear new QoS requirements such as time constraints. Real-time applications require the packets to be delivered before a known time bound which depends on the application requirements. We particularly focus on applications which consist in alarms sent to the sink node. We propose Real-Time X-layer Protocol (RTXP), a real-time communication protocol. To the best of our knowledge, RTXP is the first MAC and routing real-time communication protocol that is not centralized, but instead relies only on local information. The solution is cross-layer (X-layer) because it allows to control the delays due to MAC and Routing layers interactions. RTXP uses a suited hop-count-based Virtual Coordinate System which allows deterministic medium access and forwarder selection. In this paper we describe the protocol mechanisms. We give theoretical bound on the end-to-end delay and the capacity of the protocol. Intensive simulation results confirm the theoretical predictions and allow to compare with a real-time centralized solution. RTXP is also simulated under harsh radio channel, in this case the radio link introduces probabilistic behavior. Nevertheless, we show that RTXP it performs better than a non-deterministic solution. It thus advocates for the usefulness of designing real-time (deterministic) protocols even for highly unreliable networks such as WSNs

    Energy-aware Georouting with Guaranteed Delivery in Wireless Sensor Networks with Obstacles

    Get PDF
    International audienceWe propose, EtE, a novel end-to-end localized routing protocol for wireless sensor networks that is energy-efficient and guarantees delivery. To forward a packet, a node s in graph G computes the cost of the energy weighted shortest path between s and each of its neighbors in the forward direction towards the destination which minimizes the ratio of the cost of the shortest path to the progress (reduction in distance towards the destination). It then sends the message to the first node on the shortest path from s to x: say node x′. Node x′ restarts the same greedy rout- ing process until the destination is reached or an obstacle is encountered and the routing fails. To recover from the latter scenario, local minima trap, our algorithm invokes an energy-aware Face routing that guarantees delivery. Our work is the first to optimize energy consumption of Face routing. It works as follows. First, it builds a connected dominating set from graph G, second it computes its Gabriel graph to obtain the planar graph G′. Face routing is invoked and applied to G′ only to determine which edges to follow in the recovery process. On each edge, greedy rout- ing is applied. This two-phase (greedy-Face) End-to-End routing process (EtE) reiterates until the final destination is reached. Simulation results show that EtE outperforms several existing geographical routing on en- ergy consumption metric and delivery rate. Moreover, we prove that the computed path length and the total energy of the path are constant factors of the optimal for dense networks

    End-to-End Energy Efficient Geographic Path Discovery With Guaranteed Delivery in Ad Hoc and Sensor Networks

    Get PDF
    International audienceWe propose a novel localized routing protocol for wireless sensor networks (WSN) that is energy-efficient and guarantees delivery. We prove that it is constant factor of the optimum for dense networks. To forward a packet, a node ss in graph GG computes the cost of the energy weighted shortest path (SP) between ss and each of its neighbors which are closer to the destination than itself. It then selects node xx which minimizes the ratio of the cost of the SP to the progress towards the destination. It then sends the message to the first node on the SP from ss to xx: say node x′x'. Node x′x' restarts the same greedy routing process until the destination is reached or the routing fails. To recover from failure, our algorithm invokes Face routing that guarantees delivery. This work is the first to optimize energy consumption of Face routing. First, we build a connected dominating set from graph GG, second we compute its Gabriel graph to obtain the planar graph G′G'. Face routing is applied on G′G' only to decide which edges to follow in the recovery process. On each edge, greedy routing is used. This two-phase (greedy-Face) End-to-End routing process (EtE) reiterates until the final destination is reached. Simulation results show that EtE outperforms several existing geographical routing on energy consumption metric

    Surveying Position Based Routing Protocols for Wireless Sensor and Ad-hoc Networks

    Get PDF
    A focus of the scientific community is to design network oriented position-based routing protocols and this has resulted in a very high number of algorithms, different in approach and performance and each suited only to particular applications. However, though numerous, very few position-based algorithms have actually been adopted for commercial purposes. This article is a survey of almost 50 position-based routing protocols and it comes as an aid in the implementation of this type of routing in various applications which may need to consider the advantages and pitfalls of position-based routing. An emphasis is made on geographic routing, whose notion is clarified as a more restrictive and more efficient type of position-based routing. The protocols are therefore divided into geographic and non-geographic routing protocols and each is characterized according to a number of network design issues and presented in a comparative manner from multiple points of view. The main requirements of current general applications are also studied and, depending on these, the survey proposes a number of protocols for use in particular application areas. This aims to help both researchers and potential users assess and choose the protocol best suited to their interest

    Two-Hop Routing with Traffic-Differentiation for QoS Guarantee in Wireless Sensor Networks

    Get PDF
    This paper proposes a Traffic-Differentiated Two-Hop Routing protocol for Quality of Service (QoS) in Wireless Sensor Networks (WSNs). It targets WSN applications having different types of data traffic with several priorities. The protocol achieves to increase Packet Reception Ratio (PRR) and reduce end-to-end delay while considering multi-queue priority policy, two-hop neighborhood information, link reliability and power efficiency. The protocol is modular and utilizes effective methods for estimating the link metrics. Numerical results show that the proposed protocol is a feasible solution to addresses QoS service differenti- ation for traffic with different priorities.Comment: 13 page

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs
    • …
    corecore