260 research outputs found

    Multipair Full-Duplex Relaying with Massive Arrays and Linear Processing

    Get PDF
    We consider a multipair decode-and-forward relay channel, where multiple sources transmit simultaneously their signals to multiple destinations with the help of a full-duplex relay station. We assume that the relay station is equipped with massive arrays, while all sources and destinations have a single antenna. The relay station uses channel estimates obtained from received pilots and zero-forcing (ZF) or maximum-ratio combining/maximum-ratio transmission (MRC/MRT) to process the signals. To reduce significantly the loop interference effect, we propose two techniques: i) using a massive receive antenna array; or ii) using a massive transmit antenna array together with very low transmit power at the relay station. We derive an exact achievable rate in closed-form for MRC/MRT processing and an analytical approximation of the achievable rate for ZF processing. This approximation is very tight, especially for large number of relay station antennas. These closed-form expressions enable us to determine the regions where the full-duplex mode outperforms the half-duplex mode, as well as, to design an optimal power allocation scheme. This optimal power allocation scheme aims to maximize the energy efficiency for a given sum spectral efficiency and under peak power constraints at the relay station and sources. Numerical results verify the effectiveness of the optimal power allocation scheme. Furthermore, we show that, by doubling the number of transmit/receive antennas at the relay station, the transmit power of each source and of the relay station can be reduced by 1.5dB if the pilot power is equal to the signal power, and by 3dB if the pilot power is kept fixed, while maintaining a given quality-of-service

    Multipair Relaying With Space-Constrained Large-Scale MIMO Arrays: Spectral and Energy Efficiency Analysis With Incomplete CSI

    Get PDF
    In this paper, we study a multi-pair two-way large-scale multiple-input multiple-output (MIMO) decode-and-forward relay system. Multiple single-antenna user pairs exchange information via a shared relay working at half-duplex. The proposed scenario considers a practical case where an increasing number of antennas is deployed in a fixed physical space, giving rise to a trade-off between antenna gain and spatial correlation. The channel is assumed imperfectly known, and the relay employs linear processing methods. We study the large-scale approximations of the sum spectral efficiency (SE) and investigate the energy efficiency (EE) with a practical power consumption model when the number of relay antennas becomes large. We demonstrate the impact of the relay antenna number and spatial correlation with reducing inter-antenna distance on the EE performance. We exploit the increasing spatial correlation to allow an incomplete channel state information (CSI) acquisition where explicit CSI is acquired only for a subset of antennas. Our analytical derivations and numerical results show that applying the incomplete CSI strategy in the proposed system can improve the EE against complete CSI systems while maintaining the average SE performance

    Energy Efficient Massive MIMO and Beamforming for 5G Communications

    Get PDF
    Massive multiple-input multiple-output (MIMO) has been a key technique in the next generation of wireless communications for its potential to achieve higher capacity and data rates. However, the exponential growth of data traffic has led to a significant increase in the power consumption and system complexity. Therefore, we propose and study wireless technologies to improve the trade-off between system performance and power consumption of wireless communications. This Thesis firstly proposes a strategy with partial channel state information (CSI) acquisition to reduce the power consumption and hardware complexity of massive MIMO base stations. In this context, the employment of partial CSI is proposed in correlated communication channels with user mobility. By exploiting both the spatial correlation and temporal correlation of the channel, our analytical results demonstrate significant gains in the energy efficiency of the massive MIMO base station. Moreover, relay-aided communications have experienced raising interest; especially, two-way relaying systems can improve spectral efficiency with short required operating time. Therefore, this Thesis focuses on an uncorrelated massive MIMO two-way relaying system and studies power scaling laws to investigate how the transmit powers can be scaled to improve the energy efficiency up to several times the energy efficiency without power scaling while approximately maintaining the system performance. In a similar line, large antenna arrays deployed at the space-constrained relay would give rise to the spatial correlation. For this reason, this Thesis presents an incomplete CSI scheme to evaluate the trade-off between the spatial correlation and system performance. In addition, the advantages of linear processing methods and the effects of channel aging are investigated to further improve the relay-aided system performance. Similarly, large antenna arrays are required in millimeter-wave communications to achieve narrow beams with higher power gain. This poses the problem that locating the best beam direction requires high power and complexity consumption. Therefore, this Thesis presents several low-complexity beam alignment methods with respect to the state-of-the-art to evaluate the trade-off between complexity and system performance. Overall, extensive analytical and numerical results show an improved performance and validate the effectiveness of the proposed techniques
    • …
    corecore