13 research outputs found

    Programming a Gate-based Quantum Computer: a Comparative Analysis of the Software Development Kits for Circuit Design Automation

    Get PDF
    openThe rapid development of gate-based Quantum Computers has opened new possibilities for solving complex computational problems. However, programming these quantum systems has to deal with new challenges due to the fundamental differences between classical and Quantum Computing paradigms. This thesis presents a comparative analysis of Software Development Kits (SDKs) conceived for circuit design automation in gate-based quantum computers. The objective of this research is to evaluate and compare the capabilities, features, and usability of existing SDKs focusing on the functionalities such as allowing users to define quantum circuits, apply gate operations, and simulate their behaviour.   Apart from the widely adopted frameworks such as Qiskit, TKET, and Cirq, the analysis also includes the recently developed SDK from the University of Padua: Quantum Matcha Tea. The comparative analysis is conducted through a series of experiments and benchmarks performed on each SDK having as central points the programming interfaces usability, the documentation completeness, and the availability of support provided by the vendor or the related developer community. Another goal of this work is to explore the efficiency and flexibility of the various SDKs in handling common quantum computing tasks, such as quantum circuit design, gate operation, and circuit execution both on simulators and real quantum hardware.   The ambition of this comparative analysis is to give useful insights to researchers, developers, and practitioners in order to identify strengths and weaknesses of different SDKs depending on the specific requirements of the algorithms that need to be implemented. Additionally, the research aims to contribute to the advancement of SDKs by identifying areas of improvement and potential future directions in the development of quantum programming tools.The rapid development of gate-based Quantum Computers has opened new possibilities for solving complex computational problems. However, programming these quantum systems has to deal with new challenges due to the fundamental differences between classical and Quantum Computing paradigms. This thesis presents a comparative analysis of Software Development Kits (SDKs) conceived for circuit design automation in gate-based quantum computers. The objective of this research is to evaluate and compare the capabilities, features, and usability of existing SDKs focusing on the functionalities such as allowing users to define quantum circuits, apply gate operations, and simulate their behaviour.   Apart from the widely adopted frameworks such as Qiskit, TKET, and Cirq, the analysis also includes the recently developed SDK from the University of Padua: Quantum Matcha Tea. The comparative analysis is conducted through a series of experiments and benchmarks performed on each SDK having as central points the programming interfaces usability, the documentation completeness, and the availability of support provided by the vendor or the related developer community. Another goal of this work is to explore the efficiency and flexibility of the various SDKs in handling common quantum computing tasks, such as quantum circuit design, gate operation, and circuit execution both on simulators and real quantum hardware.   The ambition of this comparative analysis is to give useful insights to researchers, developers, and practitioners in order to identify strengths and weaknesses of different SDKs depending on the specific requirements of the algorithms that need to be implemented. Additionally, the research aims to contribute to the advancement of SDKs by identifying areas of improvement and potential future directions in the development of quantum programming tools

    Understanding Quantum Technologies 2022

    Full text link
    Understanding Quantum Technologies 2022 is a creative-commons ebook that provides a unique 360 degrees overview of quantum technologies from science and technology to geopolitical and societal issues. It covers quantum physics history, quantum physics 101, gate-based quantum computing, quantum computing engineering (including quantum error corrections and quantum computing energetics), quantum computing hardware (all qubit types, including quantum annealing and quantum simulation paradigms, history, science, research, implementation and vendors), quantum enabling technologies (cryogenics, control electronics, photonics, components fabs, raw materials), quantum computing algorithms, software development tools and use cases, unconventional computing (potential alternatives to quantum and classical computing), quantum telecommunications and cryptography, quantum sensing, quantum technologies around the world, quantum technologies societal impact and even quantum fake sciences. The main audience are computer science engineers, developers and IT specialists as well as quantum scientists and students who want to acquire a global view of how quantum technologies work, and particularly quantum computing. This version is an extensive update to the 2021 edition published in October 2021.Comment: 1132 pages, 920 figures, Letter forma

    CIRA annual report FY 2010/2011

    Get PDF

    Combining SOA and BPM Technologies for Cross-System Process Automation

    Get PDF
    This paper summarizes the results of an industry case study that introduced a cross-system business process automation solution based on a combination of SOA and BPM standard technologies (i.e., BPMN, BPEL, WSDL). Besides discussing major weaknesses of the existing, custom-built, solution and comparing them against experiences with the developed prototype, the paper presents a course of action for transforming the current solution into the proposed solution. This includes a general approach, consisting of four distinct steps, as well as specific action items that are to be performed for every step. The discussion also covers language and tool support and challenges arising from the transformation

    ECOS 2012

    Get PDF
    The 8-volume set contains the Proceedings of the 25th ECOS 2012 International Conference, Perugia, Italy, June 26th to June 29th, 2012. ECOS is an acronym for Efficiency, Cost, Optimization and Simulation (of energy conversion systems and processes), summarizing the topics covered in ECOS: Thermodynamics, Heat and Mass Transfer, Exergy and Second Law Analysis, Process Integration and Heat Exchanger Networks, Fluid Dynamics and Power Plant Components, Fuel Cells, Simulation of Energy Conversion Systems, Renewable Energies, Thermo-Economic Analysis and Optimisation, Combustion, Chemical Reactors, Carbon Capture and Sequestration, Building/Urban/Complex Energy Systems, Water Desalination and Use of Water Resources, Energy Systems- Environmental and Sustainability Issues, System Operation/ Control/Diagnosis and Prognosis, Industrial Ecology

    Infective/inflammatory disorders

    Get PDF

    The radiological investigation of musculoskeletal tumours : chairperson's introduction

    No full text
    corecore