4,929 research outputs found

    Performance Analysis of Symmetric Key Ciphers in Linear and Grid Based Sensor Networks

    Full text link
    The linear and grid based Wireless Sensor Networks (WSN) are formed by applications where objects being monitored are either placed in linear or grid based form. E.g. monitoring oil, water or gas pipelines; perimeter surveillance; monitoring traffic level of city streets, goods warehouse monitoring. The security of data is a critical issue for all such applications and as the devices used for the monitoring purpose have several resource constraints (bandwidth, storage capacity, battery life); it is significant to have a lightweight security solution. Therefore, we consider symmetric key based solutions proposed in the literature as asymmetric based solutions require more computation, energy and storage of keys. We analyse the symmetric ciphers with respect to the performance parameters: RAM, ROM consumption and number of CPU cycles. We perform this simulation analysis in Contiki Cooja by considering an example scenario on two different motes namely: Sky and Z1. The aim of this analysis is to come up with the best suited symmetric key based cipher for the linear and grid based WSN.Comment: Cryptography and Information Security (CRIS-2018

    Understanding Security Requirements and Challenges in Internet of Things (IoTs): A Review

    Full text link
    Internet of Things (IoT) is realized by the idea of free flow of information amongst various low power embedded devices that use Internet to communicate with one another. It is predicted that the IoT will be widely deployed and it will find applicability in various domains of life. Demands of IoT have lately attracted huge attention and organizations are excited about the business value of the data that will be generated by the IoT paradigm. On the other hand, IoT have various security and privacy concerns for the end users that limit its proliferation. In this paper we have identified, categorized and discussed various security challenges and state of the art efforts to resolve these challenges

    An Efficient Blockchain-based Hierarchical Authentication Mechanism for Energy Trading in V2G Environment

    Full text link
    Vehicle-to-grid (V2G) networks have emerged as a new technology in modern electric power transmission networks. It allows bi-directional flow of communication and electricity between electric vehicles (EVs) and the Smart Grid (SG), in order to provide more sophisticated energy trading. However, due to the involvement of a huge amount of trading data and the presence of untrusted entities in the visiting networks, the underlying V2G infrastructure suffers from various security and privacy challenges. Although, several solutions have been proposed in the literature to address these problems, issues like lack of mutual authentication and anonymity, incapability to protect against several attack vectors, generation of huge overhead, and dependency on centralized infrastructures make security and privacy issues even more challenging. To address the above mentioned problems, in this paper, we propose a blockchain oriented hierarchical authentication mechanism for rewarding EVs. The overall process is broadly classified into the following phases: 1) System Initialization, 2) Registration, 3) Hierarchical Mutual Authentication, and 4) Consensus; wherein blockchain's distributed ledger has been employed for transaction execution in distributed V2G environments while Elliptic curve cryptography (ECC) has been used for hierarchical authentication. The designed hierarchical authentication mechanism has been employed to preserve the anonymity of EVs and support mutual authentication between EVs, charging stations (CSs) and the central aggregator (CAG). Additionally, it also supports minimal communicational and computational overheads on resource constrained EVs. Further, formal security verification of the proposed scheme on widely accepted Automated Validation of Internet Security Protocols and Applications (AVISPA) tool validates its safeness against different security attacks.Comment: Accepted for publication in IEEE ICC 2019 Workshop on Research Advancements in Future Networking Technologies (RAFNET

    Light Weight Implementation of Stream Ciphers for M-Commerce Applications

    Full text link
    In today's world the use of computer and telecommunications networking is essential for human life. Among these, mobile tools and devices due to availability, have found a special impact on everyone life. This feature addition to providing sample facilities such as financial transactions at any place and time has raised the Sensitivities about security of these devices. In order to provide security, numerous techniques have been proposed which due to the limitations of mobile devices; an algorithm should be taken that have the ability to function for light weight ubiquitous computing. In this paper, four eSTREAM candidates from software profile were taken into account and analyzed and implemented by using J2ME technology. Then these algorithms were implemented on a variety of mobile phones and are compared with each other in terms of execution time and finally the obtained Results are expressed

    The Effect of IoT New Features on Security and Privacy: New Threats, Existing Solutions, and Challenges Yet to Be Solved

    Full text link
    The future of Internet of Things (IoT) is already upon us. IoT applications have been widely used in many field of social production and social living such as healthcare, energy and industrial automation. While enjoying the convenience and efficiency that IoT brings to us, new threats from IoT also have emerged. There are increasing research works to ease these threats, but many problems remain open. To better understand the essential reasons of new threats and the challenges in current research, this survey first proposes the concept of "IoT features". Then, the security and privacy effects of eight IoT new features were discussed including the threats they cause, existing solutions and challenges yet to be solved. To help researchers follow the up-to-date works in this field, this paper finally illustrates the developing trend of IoT security research and reveals how IoT features affect existing security research by investigating most existing research works related to IoT security from 2013 to 2017

    Software Defined Security Service Provisioning Framework for Internet of Things

    Full text link
    Programmable management framework have paved the way for managing devices in the network. Lately, emerging paradigm of Software Defined Networking (SDN) have revolutionized programmable networks. Designers of networking applications i.e. Internet of things (IoT) have started investigating potentials of SDN paradigm in improving network management. IoT envision interconnecting various embedded devices surrounding our environment with IP to enable internet connectivity. Unlike traditional network architectures, IoT are characterized by constraint in resources and heterogeneous inter connectivity of wireless and wired medium. Therefore, unique challenges for managing IoT are raised which are discussed in this paper. Ubiquity of IoT have raised unique security challenges in IoT which is one of the aspect of management framework for IoT. In this paper, security threats and requirements are summarized in IoT extracted from the state of the art efforts in investigating security challenges of IoT. Also, SDN based security service provisioning framework for IoT is proposed.Comment: 15 pages, 18 figure

    Evaluation of Lightweight Block Ciphers in Hardware Implementation: A Comprehensive Survey

    Full text link
    The conventional cryptography solutions are ill-suited to strict memory, size and power limitations of resource-constrained devices, so lightweight cryptography solutions have been specifically developed for this type of applications. In this domain of cryptography, the term lightweight never refers to inadequately low security, but rather to establishing the best balance to maintain sufficient security. This paper presents the first comprehensive survey evaluation of lightweight block ciphers in terms of their speed, cost, performance, and balanced efficiency in hardware implementation, and facilitates the comparison of studied ciphers in these respects. The cost of lightweight block ciphers is evaluated with the metric of Gate Equivalent (Fig.1), their speed with the metric of clock-cycle-per-block (Fig.2), their performance with the metric of throughput (Fig.3) and their balanced efficiency with the metric of Figure of Merit (Fig.4). The results of these evaluations show that SIMON, SPECK, and Piccolo are the best lightweight block ciphers in hardware implementation.(Abstract)Comment: 8 page

    Wireless Sensor Networks Security: State of the Art

    Full text link
    Wireless sensor networks (WSNs) have become one of the main research topics in computer science in recent years, primarily owing to the significant challenges imposed by these networks and their immense applicability. WSNs have been employed for a diverse group of monitoring applications, with emphasis on industrial control scenarios, traffic management, rescue operations, public safety, residential automation, weather forecasting, and several other fields. These networks constitute resource-constrained sensors for which security and energy efficiency are essential concerns. In this context, many research efforts have been focused on increasing the security levels and reducing the energy consumption in the network. This paper provides a state-of-the-art survey of recent works in this direction, proposing a new taxonomy for the security attacks and requirements of WSNs.Comment: 11 pages, 3 Figures, 2 Table

    Security for 4G and 5G Cellular Networks: A Survey of Existing Authentication and Privacy-preserving Schemes

    Full text link
    This paper presents a comprehensive survey of existing authentication and privacy-preserving schemes for 4G and 5G cellular networks. We start by providing an overview of existing surveys that deal with 4G and 5G communications, applications, standardization, and security. Then, we give a classification of threat models in 4G and 5G cellular networks in four categories, including, attacks against privacy, attacks against integrity, attacks against availability, and attacks against authentication. We also provide a classification of countermeasures into three types of categories, including, cryptography methods, humans factors, and intrusion detection methods. The countermeasures and informal and formal security analysis techniques used by the authentication and privacy preserving schemes are summarized in form of tables. Based on the categorization of the authentication and privacy models, we classify these schemes in seven types, including, handover authentication with privacy, mutual authentication with privacy, RFID authentication with privacy, deniable authentication with privacy, authentication with mutual anonymity, authentication and key agreement with privacy, and three-factor authentication with privacy. In addition, we provide a taxonomy and comparison of authentication and privacy-preserving schemes for 4G and 5G cellular networks in form of tables. Based on the current survey, several recommendations for further research are discussed at the end of this paper.Comment: 24 pages, 14 figure

    SIT: A Lightweight Encryption Algorithm for Secure Internet of Things

    Full text link
    The Internet of Things (IoT) being a promising technology of the future is expected to connect billions of devices. The increased number of communication is expected to generate mountains of data and the security of data can be a threat. The devices in the architecture are essentially smaller in size and low powered. Conventional encryption algorithms are generally computationally expensive due to their complexity and requires many rounds to encrypt, essentially wasting the constrained energy of the gadgets. Less complex algorithm, however, may compromise the desired integrity. In this paper we propose a lightweight encryption algorithm named as Secure IoT (SIT). It is a 64-bit block cipher and requires 64-bit key to encrypt the data. The architecture of the algorithm is a mixture of feistel and a uniform substitution-permutation network. Simulations result shows the algorithm provides substantial security in just five encryption rounds. The hardware implementation of the algorithm is done on a low cost 8-bit micro-controller and the results of code size, memory utilization and encryption/decryption execution cycles are compared with benchmark encryption algorithms. The MATLAB code for relevant simulations is available online at https://goo.gl/Uw7E0W.Comment: Original article is available at SAI IJACSA Vol 8 No 1 200
    corecore