1,771 research outputs found

    Scaled Autonomy for Networked Humanoids

    Get PDF
    Humanoid robots have been developed with the intention of aiding in environments designed for humans. As such, the control of humanoid morphology and effectiveness of human robot interaction form the two principal research issues for deploying these robots in the real world. In this thesis work, the issue of humanoid control is coupled with human robot interaction under the framework of scaled autonomy, where the human and robot exchange levels of control depending on the environment and task at hand. This scaled autonomy is approached with control algorithms for reactive stabilization of human commands and planned trajectories that encode semantically meaningful motion preferences in a sequential convex optimization framework. The control and planning algorithms have been extensively tested in the field for robustness and system verification. The RoboCup competition provides a benchmark competition for autonomous agents that are trained with a human supervisor. The kid-sized and adult-sized humanoid robots coordinate over a noisy network in a known environment with adversarial opponents, and the software and routines in this work allowed for five consecutive championships. Furthermore, the motion planning and user interfaces developed in the work have been tested in the noisy network of the DARPA Robotics Challenge (DRC) Trials and Finals in an unknown environment. Overall, the ability to extend simplified locomotion models to aid in semi-autonomous manipulation allows untrained humans to operate complex, high dimensional robots. This represents another step in the path to deploying humanoids in the real world, based on the low dimensional motion abstractions and proven performance in real world tasks like RoboCup and the DRC

    From Rolling Over to Walking: Enabling Humanoid Robots to Develop Complex Motor Skills

    Full text link
    This paper presents an innovative method for humanoid robots to acquire a comprehensive set of motor skills through reinforcement learning. The approach utilizes an achievement-triggered multi-path reward function rooted in developmental robotics principles, facilitating the robot to learn gross motor skills typically mastered by human infants within a single training phase. The proposed method outperforms standard reinforcement learning techniques in success rates and learning speed within a simulation environment. By leveraging the principles of self-discovery and exploration integral to infant learning, this method holds the potential to significantly advance humanoid robot motor skill acquisition.Comment: 8 pages, 9 figures. Submitted to IEEE Robotics and Automation Letters. Video available at https://youtu.be/d0RqrW1Ezj

    Data-Driven Grasp Synthesis - A Survey

    Full text link
    We review the work on data-driven grasp synthesis and the methodologies for sampling and ranking candidate grasps. We divide the approaches into three groups based on whether they synthesize grasps for known, familiar or unknown objects. This structure allows us to identify common object representations and perceptual processes that facilitate the employed data-driven grasp synthesis technique. In the case of known objects, we concentrate on the approaches that are based on object recognition and pose estimation. In the case of familiar objects, the techniques use some form of a similarity matching to a set of previously encountered objects. Finally for the approaches dealing with unknown objects, the core part is the extraction of specific features that are indicative of good grasps. Our survey provides an overview of the different methodologies and discusses open problems in the area of robot grasping. We also draw a parallel to the classical approaches that rely on analytic formulations.Comment: 20 pages, 30 Figures, submitted to IEEE Transactions on Robotic

    What facilitates consumers accepting service robots? A conceptual framework

    Get PDF
    Confronting with an increasing number of robots swarming into service industries to replace human personnel, studies regarding what drives consumers to use service robots leave to be, unfortunately, still fragmented. Motivated by this, based on a content analysis of the existing studies, this paper establishes a conceptual framework to comprehend the current literature for in-depth understanding concerning customer attitude and their intention to use service robots. Drawing upon a triangulation of perspectives on end-user (i.e., technology user, consumer, and network member) in adoption research, this framework adopts technology acceptance theories, service quality, and expectancy-value theory to set up the skeleton. Furthermore, the antecedents impacting customer acceptance of service robots are subdivided into robot-design, consumer-oriented, relational components, as well as exogenous factors. This paper not only elaborates on the present situation of service robot acceptance research but also promotes it by developing a comprehensive framework regarding the effect factors

    Humanoid Robots

    Get PDF
    For many years, the human being has been trying, in all ways, to recreate the complex mechanisms that form the human body. Such task is extremely complicated and the results are not totally satisfactory. However, with increasing technological advances based on theoretical and experimental researches, man gets, in a way, to copy or to imitate some systems of the human body. These researches not only intended to create humanoid robots, great part of them constituting autonomous systems, but also, in some way, to offer a higher knowledge of the systems that form the human body, objectifying possible applications in the technology of rehabilitation of human beings, gathering in a whole studies related not only to Robotics, but also to Biomechanics, Biomimmetics, Cybernetics, among other areas. This book presents a series of researches inspired by this ideal, carried through by various researchers worldwide, looking for to analyze and to discuss diverse subjects related to humanoid robots. The presented contributions explore aspects about robotic hands, learning, language, vision and locomotion

    Decoding Motor Skills of AI and Human Policies:A Study on Humanoid and Human Balance Control

    Get PDF

    Prediction and control in human neuromusculoskeletal models

    Get PDF
    Computational neuromusculoskeletal modelling enables the generation and testing of hypotheses about human movement on a large scale, in silico. Humanoid models, which increasingly aim to replicate the full complexity of the human nervous and musculoskeletal systems, are built on extensive prior knowledge, extracted from anatomical imaging, kinematic and kinetic measurement, and codified as model description. Where inverse dynamic analysis is applied, its basis is in Newton's laws of motion, and in solving for muscular redundancy it is necessary to invoke knowledge of central nervous motor strategy. This epistemological approach contrasts strongly with the models of machine learning, which are generally over-parameterised and largely data-driven. Even as spectacular performance has been delivered by the application of these models in a number of discrete domains of artificial intelligence, work towards general human-level intelligence has faltered, leading many to wonder if the data-driven approach is fundamentally limited, and spurring efforts to combine machine learning with knowledge-based modelling. Through a series of five studies, this thesis explores the combination of neuromusculoskeletal modelling with machine learning in order to enhance the core tasks of prediction and control. Several principles for the development of clinically useful artificially intelligent systems emerge: stability, computational efficiency and incorporation of prior knowledge. The first study concerns the use of neural network function approximators for the prediction of internal forces during human movement, an important task with many clinical applications, but one for which the standard tools of modelling are slow and cumbersome. By training on a large dataset of motions and their corresponding forces, state of the art performance is demonstrated, with many-fold increases in inference speed enabling the deployment of trained models for use in a real time biofeedback system. Neural networks trained in this way, to imitate some optimal controller, encode a mapping from high-level movement descriptors to actuator commands, and may thus be deployed in simulation as \textit{policies} to control the actions of humanoid models. Unfortunately, the high complexity of realistic simulation makes stable control a challenging task, beyond the capabilities of such naively trained models. The objective of the second study was to improve performance and stability of policy-based controllers for humanoid models in simulation. A novel technique was developed, borrowing from established unsupervised adversarial methods in computer vision. This technique enabled significant gains in performance relative to a neural network baseline, without the need for additional access to the optimal controller. For the third study, increases in the capabilities of these policy-based controllers were sought. Reinforcement learning is widely considered the most powerful means of optimising such policies, but it is computationally inefficient, and this inefficiency limits its clinical utility. To mitigate this problem, a novel framework, making use of domain-specific knowledge present in motion data, and in an inverse model of the biomechanical system, was developed. Training on simple desktop hardware, this framework enabled rapid initialisation of humanoid models that were able to move naturally through a 3-dimensional simulated environment, with 900-fold improvements in sample efficiency relative to a related technique based on pure reinforcement learning. After training with subject-specific anatomical parameters, and motion data, learned policies represent personalised models of motor control that may be further interrogated to test hypotheses about movement. For the fourth study, subject-specific controllers were taken and used as the substrate for transfer learning, by removing kinematic constraints and optimising with respect to the magnitude of the medial knee joint reaction force, an important biomechanical variable in osteoarthritis of the knee. Models learned new kinematic strategies for the reduction of this biomarker, which were subsequently validated by their use, in the real world, to construct subject-specific routines for real time gait retraining. Six out of eight subjects were able to reduce medial knee joint loading by pursuing the personalised kinematic targets found in simulation. Personalisation of assistive devices, such as limb prostheses, is another area of growing interest, and one for which computational frameworks promise cost-effective solutions. Reinforcement learning provides powerful techniques for this task but the expansion of the scope of optimisation, to include previously static elements of a prosthesis, is problematic for its complexity and resulting sample inefficiency. The fifth and final study demonstrates a new algorithm that leverages the methods described in the previous studies, and additional techniques for variance control, to surmount this problem, improving sample efficiency and simultaneously, through the use of prior knowledge encoded in motion data, providing a rational means of determining optimality in the prosthesis. Trained models were able to jointly optimise motor control and prosthesis design to enable improved performance in a walking task, and optimised designs were robust to both random seed and reward specification. This algorithm could be used to speed the design and production of real personalised prostheses, representing a potent realisation of the potential benefits of combined reinforcement learning and realistic neuromusculoskeletal modelling.Open Acces
    • …
    corecore