484 research outputs found

    Attributes of Big Data Analytics for Data-Driven Decision Making in Cyber-Physical Power Systems

    Get PDF
    Big data analytics is a virtually new term in power system terminology. This concept delves into the way a massive volume of data is acquired, processed, analyzed to extract insight from available data. In particular, big data analytics alludes to applications of artificial intelligence, machine learning techniques, data mining techniques, time-series forecasting methods. Decision-makers in power systems have been long plagued by incapability and weakness of classical methods in dealing with large-scale real practical cases due to the existence of thousands or millions of variables, being time-consuming, the requirement of a high computation burden, divergence of results, unjustifiable errors, and poor accuracy of the model. Big data analytics is an ongoing topic, which pinpoints how to extract insights from these large data sets. The extant article has enumerated the applications of big data analytics in future power systems through several layers from grid-scale to local-scale. Big data analytics has many applications in the areas of smart grid implementation, electricity markets, execution of collaborative operation schemes, enhancement of microgrid operation autonomy, management of electric vehicle operations in smart grids, active distribution network control, district hub system management, multi-agent energy systems, electricity theft detection, stability and security assessment by PMUs, and better exploitation of renewable energy sources. The employment of big data analytics entails some prerequisites, such as the proliferation of IoT-enabled devices, easily-accessible cloud space, blockchain, etc. This paper has comprehensively conducted an extensive review of the applications of big data analytics along with the prevailing challenges and solutions

    A Novel Features-Based Multivariate Gaussian Distribution Method for the Fraudulent Consumers Detection in the Power Utilities of Developing Countries

    Get PDF
    According to statistics, developing countries all over the world have suffered significant non-technical losses (NTLs) both in natural gas and electricity distribution. NTLs are thought of as energy that is consumed but not billed e.g., theft, meter tampering, meter reversing, etc. The adaptation of smart metering technology has enabled much of the developed world to significantly reduce their NTLs. Also, the recent advancements in machine learning and data analytics have enabled a further reduction in these losses. However, these solutions are not directly applicable to developing countries because of their infrastructure and manual data collection. This paper proposes a tailored solution based on machine learning to mitigate NTLs in developing countries. The proposed method is based on a multivariate Gaussian distribution framework to identify fraudulent consumers. It integrates novel features like social class stratification and the weather profile of an area. Thus, achieving a significant improvement in fraudulent consumer detection. This study has been done on a real dataset of consumers provided by the local power distribution companies that have been cross-validated by onsite inspection. The obtained results successfully identify fraudulent consumers with a maximum success rate of 75%. 2013 IEEE.This work was supported by the Qatar National Library.Scopus2-s2.0-8510734936

    Systematic review of energy theft practices and autonomous detection through artificial intelligence methods

    Get PDF
    Energy theft poses a significant challenge for all parties involved in energy distribution, and its detection is crucial for maintaining stable and financially sustainable energy grids. One potential solution for detecting energy theft is through the use of artificial intelligence (AI) methods. This systematic review article provides an overview of the various methods used by malicious users to steal energy, along with a discussion of the challenges associated with implementing a generalized AI solution for energy theft detection. In this work, we analyze the benefits and limitations of AI methods, including machine learning, deep learning, and neural networks, and relate them to the specific thefts also analyzing problems arising with data collection. The article proposes key aspects of generalized AI solutions for energy theft detection, such as the use of smart meters and the integration of AI algorithms with existing utility systems. Overall, we highlight the potential of AI methods to detect various types of energy theft and emphasize the need for further research to develop more effective and generalized detection systems, providing key aspects of possible generalized solutions

    Microgrids

    Get PDF
    Microgrids are a growing segment of the energy industry, representing a paradigm shift from centralized structures toward more localized, autonomous, dynamic, and bi-directional energy networks, especially in cities and communities. The ability to isolate from the larger grid makes microgrids resilient, while their capability of forming scalable energy clusters permits the delivery of services that make the grid more sustainable and competitive. Through an optimal design and management process, microgrids could also provide efficient, low-cost, clean energy and help to improve the operation and stability of regional energy systems. This book covers these promising and dynamic areas of research and development and gathers contributions on different aspects of microgrids in an aim to impart higher degrees of sustainability and resilience to energy systems

    A Survey on Energy Efficiency in Smart Homes and Smart Grids

    Get PDF
    Empowered by the emergence of novel information and communication technologies (ICTs) such as sensors and high-performance digital communication systems, Europe has adapted its electricity distribution network into a modern infrastructure known as a smart grid (SG). The benefits of this new infrastructure include precise and real-time capacity for measuring and monitoring the different energy-relevant parameters on the various points of the grid and for the remote operation and optimization of distribution. Furthermore, a new user profile is derived from this novel infrastructure, known as a prosumer (a user that can produce and consume energy to/from the grid), who can benefit from the features derived from applying advanced analytics and semantic technologies in the rich amount of big data generated by the different subsystems. However, this novel, highly interconnected infrastructure also presents some significant drawbacks, like those related to information security (IS). We provide a systematic literature survey of the ICT-empowered environments that comprise SGs and homes, and the application of modern artificial intelligence (AI) related technologies with sensor fusion systems and actuators, ensuring energy efficiency in such systems. Furthermore, we outline the current challenges and outlook for this field. These address new developments on microgrids, and data-driven energy efficiency that leads to better knowledge representation and decision-making for smart homes and SGsThis research was co-funded by Interreg Österreich-Bayern 2014–2020 programme project KI-Net: Bausteine für KI-basierte Optimierungen in der industriellen Fertigung (AB 292). This work is also supported by the ITEA3 OPTIMUM project and ITEA3 SCRATCH project, all of them funded by the Centro Tecnológico de Desarrollo Industrial (CDTI), Spain

    Microgrids:The Path to Sustainability

    Get PDF

    Data-driven Detection of Stealth Cyber-attacks in DC Microgrids

    Get PDF

    Comprehensive Survey and Taxonomies of False Injection Attacks in Smart Grid: Attack Models, Targets, and Impacts

    Full text link
    Smart Grid has rapidly transformed the centrally controlled power system into a massively interconnected cyber-physical system that benefits from the revolutions happening in the communications (e.g. 5G) and the growing proliferation of the Internet of Things devices (such as smart metres and intelligent electronic devices). While the convergence of a significant number of cyber-physical elements has enabled the Smart Grid to be far more efficient and competitive in addressing the growing global energy challenges, it has also introduced a large number of vulnerabilities culminating in violations of data availability, integrity, and confidentiality. Recently, false data injection (FDI) has become one of the most critical cyberattacks, and appears to be a focal point of interest for both research and industry. To this end, this paper presents a comprehensive review in the recent advances of the FDI attacks, with particular emphasis on 1) adversarial models, 2) attack targets, and 3) impacts in the Smart Grid infrastructure. This review paper aims to provide a thorough understanding of the incumbent threats affecting the entire spectrum of the Smart Grid. Related literature are analysed and compared in terms of their theoretical and practical implications to the Smart Grid cybersecurity. In conclusion, a range of technical limitations of existing false data attack research is identified, and a number of future research directions is recommended.Comment: Double-column of 24 pages, prepared based on IEEE Transaction articl
    corecore