369,593 research outputs found

    Comparing Kalman Filters and Observers for Power System Dynamic State Estimation with Model Uncertainty and Malicious Cyber Attacks

    Full text link
    Kalman filters and observers are two main classes of dynamic state estimation (DSE) routines. Power system DSE has been implemented by various Kalman filters, such as the extended Kalman filter (EKF) and the unscented Kalman filter (UKF). In this paper, we discuss two challenges for an effective power system DSE: (a) model uncertainty and (b) potential cyber attacks. To address this, the cubature Kalman filter (CKF) and a nonlinear observer are introduced and implemented. Various Kalman filters and the observer are then tested on the 16-machine, 68-bus system given realistic scenarios under model uncertainty and different types of cyber attacks against synchrophasor measurements. It is shown that CKF and the observer are more robust to model uncertainty and cyber attacks than their counterparts. Based on the tests, a thorough qualitative comparison is also performed for Kalman filter routines and observers.Comment: arXiv admin note: text overlap with arXiv:1508.0725

    NEURAL NETWORK BASED REACTIVE CONTROL OF POINT ABSORBER WAVE ENERGY CONVERTERS

    Get PDF
    The main objective of this work is to develop a neural-network-based Reactive Control (RC) system for wave energy converters. The ability to maximize the power output of WEC while maintaining operation constraints, which can be physical or thermal, is crucial to the development of deployable control strategies. Having a control method that is robust, which means it handles uncertainty and noise very well, is one of the main performance criteria in evaluating the method. Therefore, this work starts by deriving an averaged WEC model to be simulated in MATLAB/Simulink. Additionally, the concepts of resistive loading control and reactive control (approximate conjugate control) are discussed. A solution to sea state estimation is developed and explained which poses a contribution the current WEC research. This novel technique uses recurrent neural networks (RNNs) with time-series data input to estimate the sea state in real-time. The technique fills the gap of estimating forces based on peak frequencies and also the problem of calculating sea states based on periodical averaged statistical analysis. To complete the methodology, an optimization technique using feed forward neural networks is improved to perform optimization that is proposed to optimize the power output with respect to the sea states. This is done by using the neural network as a cost function while using the physical limitations of the system as a constraint. The neural networks in this work are developed, trained and tested using MATLAB’s Deep Network Designer and Deep Learning Toolbox then imported as a Simulink block to complete the simulation. The results are evaluated for each of the section. First, initial logging of the performance metrics, such as mean power, is done prior to the addition of any neural networks. The accuracy and robustness of the sea state estimation RNN is then discussed. Finally, a comparison between traditional reactive Control optimized and reactive Control is conducted. To summarize the outcome, after experimenting with different datasets and architectures, the RNN is able to estimate sea states in real-time under different initial conditions

    Active actuator fault-tolerant control of a wind turbine benchmark model

    Get PDF
    This paper describes the design of an active fault-tolerant control scheme that is applied to the actuator of a wind turbine benchmark. The methodology is based on adaptive filters obtained via the nonlinear geometric approach, which allows to obtain interesting decoupling property with respect to uncertainty affecting the wind turbine system. The controller accommodation scheme exploits the on-line estimate of the actuator fault signal generated by the adaptive filters. The nonlinearity of the wind turbine model is described by the mapping to the power conversion ratio from tip-speed ratio and blade pitch angles. This mapping represents the aerodynamic uncertainty, and usually is not known in analytical form, but in general represented by approximated two-dimensional maps (i.e. look-up tables). Therefore, this paper suggests a scheme to estimate this power conversion ratio in an analytical form by means of a two-dimensional polynomial, which is subsequently used for designing the active fault-tolerant control scheme. The wind turbine power generating unit of a grid is considered as a benchmark to show the design procedure, including the aspects of the nonlinear disturbance decoupling method, as well as the viability of the proposed approach. Extensive simulations of the benchmark process are practical tools for assessing experimentally the features of the developed actuator fault-tolerant control scheme, in the presence of modelling and measurement errors. Comparisons with different fault-tolerant schemes serve to highlight the advantages and drawbacks of the proposed methodology
    • …
    corecore