2,500 research outputs found

    The impact of domestic plug-in hybrid electric vehicles on power distribution system loads

    Get PDF
    The market for Plug-in Hybrid Electric Vehicle (PHEVs) is expected to grow significantly over the next few years and a number of new products are soon to come onto the market, such as the Toyota Prius plug-in version, . The charging demand of wide-scale use of PHEVs may have a significant impact on domestic electricity loads and could risk of overloading the power system if appropriate charging strategies not applied to prevent this. A Monte Carlo Simulation (MCS) model of domestic PHEV use and availability has been developed based on probabilistic characterisations obtained from UKTUS and quantifies charging demand of PHEVs as a function of time of day. The MCS model has been developed in order to simulate the impact on the electricity distribution system. This article also discusses the potential for responsive battery charging load from PHEVs

    Integrated framework for modeling the interactions of plug-in hybrid electric vehicles aggregators, parking lots and distributed generation facilities in electricity markets

    Get PDF
    This paper presents an integrated framework for the optimal resilient scheduling of an active distribution system in the day-ahead and real-time markets considering aggregators, parking lots, distributed energy resources, and Plug-in Hybrid Electric Vehicles (PHEVs) interactions. The main contribution of this paper is that the impacts of traffic patterns on the available dispatchable active power of PHEVs in day-ahead and real-time markets are explored. A two stage framework is considered. Each stage consists of a four-level optimization procedure that optimizes the scheduling problems of PHEVs, parking lots and distributed energy resources, aggregators, and active distribution system. The distribution system procures ramp-up and ramp-down services for the upward electricity market in a real-time horizon. The active distribution system can utilize a switching procedure to sectionalize its system into a multi-microgrid system to mitigate the impacts of external shocks. The model was assessed by the 123-bus test system. The proposed algorithm reduced the interruption and operating costs of the 123-bus test system by about 94.56% for the worst-case external shock. Further, the traffic pattern decreased the available ramp-up and ramp-down of parking lots by about 58.61% concerning the no-traffic case.© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Prospects for Plug-in Hybrid Electric Vehicles in the United States and Japan: A General Equilibrium Analysis

    Get PDF
    Abstract and PDF report are also available on the MIT Joint Program on the Science and Policy of Global Change website (http://globalchange.mit.edu/)The plug-in hybrid electric vehicle (PHEV) may offer a potential near term, low carbon alternative to today's gasoline- and diesel-powered vehicles. A representative vehicle technology that runs on electricity in addition to conventional fuels was introduced into the MIT Emissions Prediction and Policy Analysis (EPPA) model as a perfect substitute for internal combustion engine (ICE-only) vehicles in two likely early-adopting markets, the United States and Japan. We investigate the effect of relative vehicle cost and all-electric range on the timing of PHEV market entry in the presence and absence of an advanced cellulosic biofuels technology and a strong (450ppm) economy-wide carbon constraint. Vehicle cost could be a significant barrier to PHEV entry unless fairly aggressive goals for reducing battery costs are met. If a low cost vehicle is available we find that the PHEV has the potential to reduce CO2 emissions, refined oil demand, and under a carbon policy the required CO2 price in both the United States and Japan. The emissions reduction potential of PHEV adoption depends on the carbon intensity of electric power generation and the size of the vehicle fleet. Thus, the technology is much more effective in reducing CO2 emissions if adoption occurs under an economy-wide cap and trade system that also encourages low-carbon electricity generation.BP Conversion Research Project and the MIT Joint Program on the Science and Policy of Global Change through a consortium of industrial sponsors and Federal grants

    Ready to Roll?: Overview of Challenges and Opportunities

    Get PDF
    Alternative Fuel Vehicles (AFVs) use combinations of vehicle fuels and technologies to reduce the use of petroleum in on-road vehicles. These include low-carbon fuels (sometimes blended with petroleum), electricity, and hybrid technologies combining internal combustion engines with electric motors. DVRPC's Ready to Roll? Report provides an overview for policymakers and citizens in the Greater Philadelphia region about the challenges and opportunities for expanded use of alternative fuel vehicles. The AFVs covered in this report include those most widely available today or likely to become available in the next 10 to 20 years

    Integrated Generation Management for Maximizing Renewable Resource Utilization

    Get PDF
    Two proposed methods to reduce the effective intermittency and improve the efficiency of wind power generation in the grid are spatial smoothing of wind generation and utilization of short term electrical storage to deal with lulls in production. In this thesis, based on a concept called integrated generation management (IGM), we explore the impact of spatial smoothing and the use of emerging plug-in hybrid electric vehicles (PHEVs) as a potential storage resource to the smart-grid. IGM combines nuclear, slow load-following coal, fast load-following natural gas, and renewable wind generation with an optimal control method to maximize the renewable generation and minimize the fossil generation. With the increasing penetration of PHEVs, the power grid is seeing new opportunities to make itself smarter than ever by utilizing those relatively large batteries. Based on current projections of PHEV market penetration and various wind generation scenarios, we demonstrate the potential for efficient wind integration at levels of approaching 30% of the aver- age electrical load with utilization efficiency exceeding 65%. At lower levels of integration (e.g. 15%), efficiencies are possible exceeding 85%

    Ready To Roll: Southeastern Pennsylvania's Regional Electric Vehicle Action Plan

    Get PDF
    On-road internal combustion engine (ICE) vehicles are responsible for nearly one-third of energy use and one-quarter of greenhouse gas (GHG) emissions in southeastern Pennsylvania.1 Electric vehicles (EVs), including plug-in hybrid electric vehicles (PHEVs) and all-electric vehicles (AEVs), present an opportunity to serve a significant portion of the region's mobility needs while simultaneously reducing energy use, petroleum dependence, fueling costs, and GHG emissions. As a national leader in EV readiness, the region can serve as an example for other efforts around the country."Ready to Roll! Southeastern Pennsylvania's Regional EV Action Plan (Ready to Roll!)" is a comprehensive, regionally coordinated approach to introducing EVs and electric vehicle supply equipment (EVSE) into the five counties of southeastern Pennsylvania (Bucks, Chester, Delaware, Montgomery, and Philadelphia). This plan is the product of a partnership between the Delaware Valley Regional Planning Commission (DVRPC), the City of Philadelphia, PECO Energy Company (PECO; the region's electricity provider), and Greater Philadelphia Clean Cities (GPCC). Additionally, ICF International provided assistance to DVRPC with the preparation of this plan. The plan incorporates feedback from key regional stakeholders, national best practices, and research to assess the southeastern Pennsylvania EV market, identify current market barriers, and develop strategies to facilitate vehicle and infrastructure deployment

    Technological Solutions for Energy Security and Sustainability

    Get PDF
    This paper addresses the question: how can we minimize the expected time between now and the time when we achieve three measures of sustainability and security together -- independence from oil in cars and trucks, very deep reductions in greenhouse gas emissions and deep reductions in natural gas for electricity? Specific new technologies and metrics for progress are discussed, in context, linked to new information from IEEE, NSF, the State of the Future project and other sources
    • 

    corecore