24 research outputs found

    Low Power Processor Architectures and Contemporary Techniques for Power Optimization – A Review

    Get PDF
    The technological evolution has increased the number of transistors for a given die area significantly and increased the switching speed from few MHz to GHz range. Such inversely proportional decline in size and boost in performance consequently demands shrinking of supply voltage and effective power dissipation in chips with millions of transistors. This has triggered substantial amount of research in power reduction techniques into almost every aspect of the chip and particularly the processor cores contained in the chip. This paper presents an overview of techniques for achieving the power efficiency mainly at the processor core level but also visits related domains such as buses and memories. There are various processor parameters and features such as supply voltage, clock frequency, cache and pipelining which can be optimized to reduce the power consumption of the processor. This paper discusses various ways in which these parameters can be optimized. Also, emerging power efficient processor architectures are overviewed and research activities are discussed which should help reader identify how these factors in a processor contribute to power consumption. Some of these concepts have been already established whereas others are still active research areas. © 2009 ACADEMY PUBLISHER

    On the design and implementation of a control system processor

    Get PDF
    In general digital control algorithms are multi-input multi-output (MIMO) recursive digital filters, but there are particular numerical requirements in control system processing for which standard processor devices are not well suited, in particular arising in systems with high sample rates. There is therefore a clear need to understand the numerical requirements properly, to identity optimised forms for implementing control laws, and to translate these into efficient processor architectures. By taking a considered view of the numerical and calculation requirements of control algorithms, it is possible to consider special purpose processors that provide well-targeted support of control laws. This thesis describes a compact, high-speed, special-purpose processor which offers a low-cost solution to implementing linear time invariant controllers. [Continues.

    On Tunable Sparse Network Coding in Commercial Devices for Networks and Filesystems

    Get PDF

    Low power architectures for streaming applications

    Get PDF

    CROSS-LAYER CUSTOMIZATION PLATFORM FOR LOW-POWER AND REAL-TIME EMBEDDED APPLICATIONS

    Get PDF
    Modern embedded applications have become increasingly complex and diverse in their functionalities and requirements. Data processing, communication and multimedia signal processing, real-time control and various other functionalities can often need to be implemented on the same System-on-Chip(SOC) platform. The significant power constraints and real-time guarantee requirements of these applications have become significant obstacles for the traditional embedded system design methodologies. The general-purpose computing microarchitectures of these platforms are designed to achieve good performance on average, which is far from optimal for any particular application. The system must always assume worst-case scenarios, which results in significant power inefficiencies and resource under-utilization. This dissertation introduces a cross-layer application-customizable embedded platform, which dynamically exploits application information and fine-tunes system components at system software and hardware layers. This is achieved with the close cooperation and seamless integration of the compiler, the operating system, and the hardware architecture. The compiler is responsible for extracting application regularities through static and profile-based analysis. The relevant application knowledge is propagated and utilized at run-time across the system layers through the judiciously introduced reconfigurability at both OS and hardware layers. The introduced framework comprehensively covers the fundamental subsystems of memory management and multi-tasking execution control

    Language and compiler support for stream programs

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 153-166).Stream programs represent an important class of high-performance computations. Defined by their regular processing of sequences of data, stream programs appear most commonly in the context of audio, video, and digital signal processing, though also in networking, encryption, and other areas. Stream programs can be naturally represented as a graph of independent actors that communicate explicitly over data channels. In this work we focus on programs where the input and output rates of actors are known at compile time, enabling aggressive transformations by the compiler; this model is known as synchronous dataflow. We develop a new programming language, StreamIt, that empowers both programmers and compiler writers to leverage the unique properties of the streaming domain. StreamIt offers several new abstractions, including hierarchical single-input single-output streams, composable primitives for data reordering, and a mechanism called teleport messaging that enables precise event handling in a distributed environment. We demonstrate the feasibility of developing applications in StreamIt via a detailed characterization of our 34,000-line benchmark suite, which spans from MPEG-2 encoding/decoding to GMTI radar processing. We also present a novel dynamic analysis for migrating legacy C programs into a streaming representation. The central premise of stream programming is that it enables the compiler to perform powerful optimizations. We support this premise by presenting a suite of new transformations. We describe the first translation of stream programs into the compressed domain, enabling programs written for uncompressed data formats to automatically operate directly on compressed data formats (based on LZ77). This technique offers a median speedup of 15x on common video editing operations.(cont.) We also review other optimizations developed in the StreamIt group, including automatic parallelization (offering an 11x mean speedup on the 16-core Raw machine), optimization of linear computations (offering a 5.5x average speedup on a Pentium 4), and cache-aware scheduling (offering a 3.5x mean speedup on a StrongARM 1100). While these transformations are beyond the reach of compilers for traditional languages such as C, they become tractable given the abundant parallelism and regular communication patterns exposed by the stream programming model.by William Thies.Ph.D

    Pinpointing Software Inefficiencies With Profiling

    Get PDF
    Complex codebases with several layers of abstractions have abundant inefficiencies that affect the performance. These inefficiencies arise due to various causes such as developers\u27 inattention to performance, inappropriate choice of algorithms and inefficient code generation among others. To eliminate the redundancies, lots of work has been done during the compiling phase. However, not all redundancies can be easily detected or eliminated with compiler optimization passes due to aliasing, limited optimization scopes, and insensitivity to input and execution contexts act as severe deterrents to static program analysis. There are also profiling tools which can reveal how resources are used. However, they can hard to distinguish whether the resource is worth fully used. More profiling tools are in needed to diagnose resource wastage and pinpoint inefficiencies. We have developed three tools to pinpoint different types of inefficiencies in different granularity. We build Runtime Value Numbering (RVN), a dynamic fine-grained profiler to pinpoint and quantify redundant computations in an execution. It is based on the classical value numbering technique but works at runtime instead of compile-time. We developed RedSpy, a fine-grained profiler to pinpoint and quantify value redundancies in program executions. Value redundancy may happen overtime at the same locations or in adjacent locations, and thus it has temporal and spatial locality. RedSpy identifies both temporal and spatial value locality. Furthermore, RedSpy is capable of identifying values that are approximately the same, enabling optimization opportunities in HPC codes that often use floating-point computations. RVN and RedSpy are both instrumentation based tools. They provide comprehensive result while introducing high space and time overhead. Our lightweight framework, Witch, samples consecutive accesses to the same memory location by exploiting two ubiquitous hardware features: the performance monitoring units (PMU) and debug registers. Witch performs no instrumentation. Hence, witchcraft - tools built atop Witch - can detect a variety of software inefficiencies while introducing negligible slowdown and insignificant memory consumption and yet maintaining accuracy comparable to exhaustive instrumentation tools. Witch allowed us to scale our analysis to a large number of codebases. All the tools work on fully optimized binary executable and provide insightful optimization guidance by apportioning redundancies to their provenance - source lines and full calling contexts. We apply RVN, RedSpy, and Witch on programs that were optimization targets for decades and guided by the tools, we were able to eliminate redundancies that resulted in significant speedups
    corecore