863 research outputs found

    Reliable machine-to-machine multicast services with multi-radio cooperative retransmissions

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11036-015-0575-6The 3GPP is working towards the definition of service requirements and technical solutions to provide support for energy-efficient Machine Type Communications (MTC) in the forthcoming generations of cellular networks. One of the envisioned solutions consists in applying group management policies to clusters of devices in order to reduce control signaling and improve upon energy efficiency, e.g., multicast Over-The-Air (OTA) firmware updates. In this paper, a Multi-Radio Cooperative Retransmission Scheme is proposed to efficiently carry out multicast transmissions in MTC networks, reducing both control signaling and improving energy-efficiency. The proposal can be executed in networks composed by devices equipped with multiple radio interfaces which enable them to connect to both a cellular access network, e.g., LTE, and a short-range MTC area network, e.g., Low-Power Wi-Fi or ZigBee, as foreseen by the MTC architecture defined by ETSI. The main idea is to carry out retransmissions over the M2M area network upon error in the main cellular link. This yields a reduction in both the traffic load over the cellular link and the energy consumption of the devices. Computer-based simulations with ns-3 have been conducted to analyze the performance of the proposed scheme in terms of energy consumption and assess its superior performance compared to non-cooperative retransmission schemes, thus validating its suitability for energy-constrained MTC applications.Peer ReviewedPostprint (author's final draft

    Goodbye, ALOHA!

    Get PDF
    ©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The vision of the Internet of Things (IoT) to interconnect and Internet-connect everyday people, objects, and machines poses new challenges in the design of wireless communication networks. The design of medium access control (MAC) protocols has been traditionally an intense area of research due to their high impact on the overall performance of wireless communications. The majority of research activities in this field deal with different variations of protocols somehow based on ALOHA, either with or without listen before talk, i.e., carrier sensing multiple access. These protocols operate well under low traffic loads and low number of simultaneous devices. However, they suffer from congestion as the traffic load and the number of devices increase. For this reason, unless revisited, the MAC layer can become a bottleneck for the success of the IoT. In this paper, we provide an overview of the existing MAC solutions for the IoT, describing current limitations and envisioned challenges for the near future. Motivated by those, we identify a family of simple algorithms based on distributed queueing (DQ), which can operate for an infinite number of devices generating any traffic load and pattern. A description of the DQ mechanism is provided and most relevant existing studies of DQ applied in different scenarios are described in this paper. In addition, we provide a novel performance evaluation of DQ when applied for the IoT. Finally, a description of the very first demo of DQ for its use in the IoT is also included in this paper.Peer ReviewedPostprint (author's final draft

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    On the effect of combining cooperative communication with sleep mode

    Get PDF
    Cooperation is crucial in (next-generation) wireless networks as it can greatly attribute to ensuring connectivity, reliability, performance, ... Relaying looks promising in a wide variety of network types (cellular, ad-hoc on-demand), each using a certain protocol. Energy efficiency constitutes another key aspect of such networks, as battery power is often limited, and is typically achieved by sleep mode operation. As the range of applications is very broad, rather than modelling one of the protocols in detail, we construct a high-level model capturing the two essential characteristics of cooperation and energy efficiency: relaying and sleep mode, and study their interaction. The used analytical approach allows for accurate performance evaluation and enables us to unveil less trivial trade-offs and to formulate rules-of-thumb applicable across all potential scenarios

    Control-data separation architecture for cellular radio access networks: a survey and outlook

    Get PDF
    Conventional cellular systems are designed to ensure ubiquitous coverage with an always present wireless channel irrespective of the spatial and temporal demand of service. This approach raises several problems due to the tight coupling between network and data access points, as well as the paradigm shift towards data-oriented services, heterogeneous deployments and network densification. A logical separation between control and data planes is seen as a promising solution that could overcome these issues, by providing data services under the umbrella of a coverage layer. This article presents a holistic survey of existing literature on the control-data separation architecture (CDSA) for cellular radio access networks. As a starting point, we discuss the fundamentals, concepts, and general structure of the CDSA. Then, we point out limitations of the conventional architecture in futuristic deployment scenarios. In addition, we present and critically discuss the work that has been done to investigate potential benefits of the CDSA, as well as its technical challenges and enabling technologies. Finally, an overview of standardisation proposals related to this research vision is provided

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Semi-persistent RRC protocol for machine-type communication devices in LTE networks

    Get PDF
    In this paper, we investigate the design of a radio resource control (RRC) protocol in the framework of long-term evolution (LTE) of the 3rd Generation Partnership Project regarding provision of low cost/complexity and low energy consumption machine-type communication (MTC), which is an enabling technology for the emerging paradigm of the Internet of Things. Due to the nature and envisaged battery-operated long-life operation of MTC devices without human intervention, energy efficiency becomes extremely important. This paper elaborates the state-of-the-art approaches toward addressing the challenge in relation to the low energy consumption operation of MTC devices, and proposes a novel RRC protocol design, namely, semi-persistent RRC state transition (SPRST), where the RRC state transition is no longer triggered by incoming traffic but depends on pre-determined parameters based on the traffic pattern obtained by exploiting the network memory. The proposed RRC protocol can easily co-exist with the legacy RRC protocol in the LTE. The design criterion of SPRST is derived and the signalling procedure is investigated accordingly. Based upon the simulation results, it is shown that the SPRST significantly reduces both the energy consumption and the signalling overhead while at the same time guarantees the quality of service requirements
    • …
    corecore