2,411 research outputs found

    The NASA SBIR product catalog

    Get PDF
    The purpose of this catalog is to assist small business firms in making the community aware of products emerging from their efforts in the Small Business Innovation Research (SBIR) program. It contains descriptions of some products that have advanced into Phase 3 and others that are identified as prospective products. Both lists of products in this catalog are based on information supplied by NASA SBIR contractors in responding to an invitation to be represented in this document. Generally, all products suggested by the small firms were included in order to meet the goals of information exchange for SBIR results. Of the 444 SBIR contractors NASA queried, 137 provided information on 219 products. The catalog presents the product information in the technology areas listed in the table of contents. Within each area, the products are listed in alphabetical order by product name and are given identifying numbers. Also included is an alphabetical listing of the companies that have products described. This listing cross-references the product list and provides information on the business activity of each firm. In addition, there are three indexes: one a list of firms by states, one that lists the products according to NASA Centers that managed the SBIR projects, and one that lists the products by the relevant Technical Topics utilized in NASA's annual program solicitation under which each SBIR project was selected

    Weather corrected electricity demand forecasting

    Get PDF
    Electricity load forecasts now form an essential part of the routine operations of electricity companies. The complexity of the short-term load forecasting (STLF) problem arises from the multiple seasonal components, the change in consumer behaviour during holiday seasons and other social and religious events that affect electricity consumption. The aim of this research is to produce models for electricity demand that can be used to further the understanding of the dynamics of electricity consumption in South Wales. These models can also be used to produce weather corrected forecasts, and to provide short-term load forecasts. Two novel time series modelling approaches were introduced and developed. Profiles ARIMA (PARIMA) and the Variability Decomposition Method (VDM). PARIMA is a univariate modelling approach that is based on the hierarchical modelling of the different components of the electricity demand series as deterministic profiles, and modelling the remainder stochastic component as ARIMA, serving as a simple yet versatile signal extraction procedure and as a powerful prewhitening technique. The VDM is a robust transfer function modelling approach that is based on decomposing the variability in time series data to that of inherent and external. It focuses the transfer function model building on explaining the external variability of the data and produces models with parameters that are pertinent to the components of the series. Several candidate input variables for the VDM models for electricity demand were investigated, and a novel collective measure of temperature the Fair Temperature Value (FTV) was introduced. The FTV takes into account the changes in variance of the daily maximum and minimum temperatures with time, making it a more suitable explanatory variable for the VDM model. The novel PARIMA and VDM approaches were used to model the quarterly, monthly, weekly, and daily demand series. Both approaches succeeded where existing approaches were unsuccessful and, where comparisons are possible, produced models that were superior in performance. The VDM model with the FTV as its explanatory variable was the best performing model in the analysis and was used for weather correction. Here, weather corrected forecasts were produced using the weather sensitive components of the PARIMA models and the FTV transfer function component of the VDM model

    Wavefront Prediction Using Artificial Neural Networks for Adaptive Optics

    Get PDF
    Latency in the control loop of Adaptive Optics (AO) systems can severely limit its performance. Theories describing the temporal evolution of the atmospheric turbulence, such as the frozen flow hypothesis, justify the feasibility of predicting the turbulence (or equivalently its measurements) to compensate for the resultant temporal error in the system. This will mostly benefit AO assisted High Contrast Imaging (HCI) instruments for enhanced contrast, or wide-field AO systems for improved sky coverage. In this thesis, we explore the potential of an Artificial Neural Network (ANN) as a nonlinear tool for open-loop wavefront prediction. The ANN predictor composes mainly Long Short-Term Memory (LSTM) cells, an ANN type specialised in sequence modelling and prediction. We demonstrate the efficiency and robustness of an ANN predictor both with simulated and on-sky 7 × 7 Shack-Hartmann Wavefront Sensor (SHWFS) CANARY data measured at 150 Hz, an AO demonstrator on the 4.2 m William Herschel Telescope (WHT), La Palma. We provide evidence that in addition to accurately predicting the wavefronts, an ANN predictor is also filtering high temporal frequencies such as Wavefront Sensor (WFS) noise. We show that an ANN predictor is adaptive to time-variant turbulence on sub-second level without user tuning. Specifically, we show that an ANN predictor is capable of predicting both frozen flow and non-frozen flow such as dome seeing, and that the ANN prediction can be based on a per-subaperture basis. As a pioneer, this thesis examines in great detail the characteristics of an ANN wavefront predictor and provides implications towards an on-sky implementation

    Deep learning architectures applied to wind time series multi-step forecasting

    Get PDF
    Forecasting is a critical task for the integration of wind-generated energy into electricity grids. Numerical weather models applied to wind prediction, work with grid sizes too large to reproduce all the local features that influence wind, thus making the use of time series with past observations a necessary tool for wind forecasting. This research work is about the application of deep neural networks to multi-step forecasting using multivariate time series as an input, to forecast wind speed at 12 hours ahead. Wind time series are sequences of meteorological observations like wind speed, temperature, pressure, humidity, and direction. Wind series have two statistically relevant properties; non-linearity and non-stationarity, which makes the modelling with traditional statistical tools very inaccurate. In this thesis we design, test and validate novel deep learning models for the wind energy prediction task, applying new deep architectures to the largest open wind data repository available from the National Renewable Laboratory of the US (NREL) with 126,692 wind sites evenly distributed on the US geography. The heterogeneity of the series, obtained from several data origins, allows us to obtain conclusions about the level of fitness of each model to time series that range from highly stationary locations to variable sites from complex areas. We propose Multi-Layer, Convolutional and recurrent Networks as basic building blocks, and then combined into heterogeneous architectures with different variants, trained with optimisation strategies like drop and skip connections, early stopping, adaptive learning rates, filters and kernels of different sizes, between others. The architectures are optimised by the use of structured hyper-parameter setting strategies to obtain the best performing model across the whole dataset. The learning capabilities of the architectures applied to the various sites find relationships between the site characteristics (terrain complexity, wind variability, geographical location) and the model accuracy, establishing novel measures of site predictability relating the fit of the models with indexes from time series spectral or stationary analysis. The designed methods offer new, and superior, alternatives to traditional methods.La predicció de vent és clau per a la integració de l'energia eòlica en els sistemes elèctrics. Els models meteorològics es fan servir per predicció, però tenen unes graelles geogràfiques massa grans per a reproduir totes les característiques locals que influencien la formació de vent, fent necessària la predicció d'acord amb les sèries temporals de mesures passades d'una localització concreta. L'objectiu d'aquest treball d'investigació és l'aplicació de xarxes neuronals profundes a la predicció \textit{multi-step} utilitzant com a entrada series temporals de múltiples variables meteorològiques, per a fer prediccions de vent d'ací a 12 hores. Les sèries temporals de vent són seqüències d'observacions meteorològiques tals com, velocitat del vent, temperatura, humitat, pressió baromètrica o direcció. Les sèries temporals de vent tenen dues propietats estadístiques rellevants, que són la no linearitat i la no estacionalitat, que fan que la modelització amb eines estadístiques sigui poc precisa. En aquesta tesi es validen i proven models de deep learning per la predicció de vent, aquests models d'arquitectures d'autoaprenentatge s'apliquen al conjunt de dades de vent més gran del món, que ha produït el National Renewable Laboratory dels Estats Units (NREL) i que té 126,692 ubicacions físiques de vent distribuïdes per total la geografia de nord Amèrica. L'heterogeneïtat d'aquestes sèries de dades permet establir conclusions fermes en la precisió de cada mètode aplicat a sèries temporals generades en llocs geogràficament molt diversos. Proposem xarxes neuronals profundes de tipus multi-capa, convolucionals i recurrents com a blocs bàsics sobre els quals es fan combinacions en arquitectures heterogènies amb variants, que s'entrenen amb estratègies d'optimització com drops, connexions skip, estratègies de parada, filtres i kernels de diferents mides entre altres. Les arquitectures s'optimitzen amb algorismes de selecció de paràmetres que permeten obtenir el model amb el millor rendiment, en totes les dades. Les capacitats d'aprenentatge de les arquitectures aplicades a ubicacions heterogènies permet establir relacions entre les característiques d'un lloc (complexitat del terreny, variabilitat del vent, ubicació geogràfica) i la precisió dels models, establint mesures de predictibilitat que relacionen la capacitat dels models amb les mesures definides a partir d'anàlisi espectral o d'estacionalitat de les sèries temporals. Els mètodes desenvolupats ofereixen noves i superiors alternatives als algorismes estadístics i mètodes tradicionals.Arquitecturas de aprendizaje profundo aplicadas a la predición en múltiple escalón de series temporales de viento. La predicción de viento es clave para la integración de esta energía eólica en los sistemas eléctricos. Los modelos meteorológicos tienen una resolución geográfica demasiado amplia que no reproduce todas las características locales que influencian en la formación del viento, haciendo necesaria la predicción en base a series temporales de cada ubicación concreta. El objetivo de este trabajo de investigación es la aplicación de redes neuronales profundas a la predicción multi-step usando como entrada series temporales de múltiples variables meteorológicas, para realizar predicciones de viento a 12 horas. Las series temporales de viento son secuencias de observaciones meteorológicas tales como, velocidad de viento, temperatura, humedad, presión barométrica o dirección. Las series temporales de viento tienen dos propiedades estadísticas relevantes, que son la no linealidad y la no estacionalidad, lo que implica que su modelización con herramientas estadísticas sea poco precisa. En esta tesis se validan y verifican modelos de aprendizaje profundo para la predicción de viento, estos modelos de arquitecturas de aprendizaje automático se aplican al conjunto de datos de viento más grande del mundo, que ha sido generado por el National Renewable Laboratory de los Estados Unidos (NREL) y que tiene 126,682 ubicaciones físicas de viento distribuidas por toda la geografía de Estados Unidos. La heterogeneidad de estas series de datos permite establecer conclusiones válidas sobre la validez de cada método al ser aplicado en series temporales generadas en ubicaciones físicas muy diversas. Proponemos redes neuronales profundas de tipo multi capa, convolucionales y recurrentes como tipos básicos, sobre los que se han construido combinaciones en arquitecturas heterogéneas con variantes de entrenamiento como drops, conexiones skip, estrategias de parada, filtros y kernels de distintas medidas, entre otros. Las arquitecturas se optimizan con algoritmos de selección de parámetros que permiten obtener el mejor modelo buscando el mejor rendimiento, incluyendo todos los datos. Las capacidades de aprendizaje de las arquitecturas aplicadas a localizaciones físicas muy variadas permiten establecer relaciones entre las características de una ubicación (complejidad del terreno, variabilidad de viento, ubicación geográfica) y la precisión de los modelos, estableciendo medidas de predictibilidad que relacionan la capacidad de los algoritmos con índices que se definen a partir del análisis espectral o de estacionalidad de las series temporales. Los métodos desarrollados ofrecen nuevas alternativas a los algoritmos estadísticos tradicionales.Postprint (published version

    NASA SBIR product catalog, 1991

    Get PDF
    This catalog is a partial list of products of NASA SBIR (Small Business Innovation Research) projects that have advanced to some degree into Phase 3. While most of the products evolved from work conducted during SBIR Phase 1 and 2, a few advanced to commercial status solely from Phase 1 activities. The catalog presents information provided to NASA by SBIR contractors who wished to have their products exhibited at Technology 2001, a NASA-sponsored technology transfer conference held in San Jose, California, on December 4, 5, and 6, 1991. The catalog presents the product information in the following technology areas: computer and communication systems; information processing and AI; robotics and automation; signal and image processing; microelectronics; electronic devices and equipment; microwave electronic devices; optical devices and lasers; advanced materials; materials processing; materials testing and NDE; materials instrumentation; aerodynamics and aircraft; fluid mechanics and measurement; heat transfer devices; refrigeration and cryogenics; energy conversion devices; oceanographic instruments; atmosphere monitoring devices; water management; life science instruments; and spacecraft electromechanical systems

    Photovoltaic Module Reliability Workshop 2010: February 18-19, 2010

    Full text link

    Modelling and Control of Switched Reluctance Machines

    Get PDF
    Today, switched reluctance machines (SRMs) play an increasingly important role in various sectors due to advantages such as robustness, simplicity of construction, low cost, insensitivity to high temperatures, and high fault tolerance. They are frequently used in fields such as aeronautics, electric and hybrid vehicles, and wind power generation. This book is a comprehensive resource on the design, modeling, and control of SRMs with methods that demonstrate their good performance as motors and generators
    corecore