1,106 research outputs found

    Maximum performance of piezoelectric energy harvesters when coupled to interface circuits

    Get PDF
    This paper presents a complete optimization of a piezoelectric vibration energy harvesting system, including a piezoelectric transducer, a power conditioning circuit with full semiconductor device models, a battery and passive components. To the authors awareness, this is the first time and all of these elements have been integrated into one optimization. The optimization is done within a framework, which models the combined mechanical and electrical elements of a complete piezoelectric vibration energy harvesting system. To realize the optimization, an optimal electrical damping is achieved using a single-supply pre-biasing circuit with a buck converter to charge the battery. The model is implemented in MATLAB and verified in SPICE. The results of the full system model are used to find the mechanical and electrical system parameters required to maximize the power output. The model, therefore, yields the upper bound of the output power and the system effectiveness of complete piezoelectric energy harvesting systems and, hence, provides both a benchmark for assessing the effectiveness of existing harvesters and a framework to design the optimized harvesters. It is also shown that the increased acceleration does not always result in increased power generation as a larger damping force is required, forcing a geometry change of the harvester to avoid exceeding the piezoelectric breakdown voltage. Similarly, increasing available volume may not result in the increased power generation because of the difficulty of resonating the beam at certain frequencies whilst utilizing the entire volume. A maximum system effectiveness of 48% is shown to be achievable at 100 Hz for a 3.38-cm3 generator

    Energy harvesting from human and machine motion for wireless electronic devices

    No full text
    Published versio

    Power Management Electronics

    No full text
    Accepted versio

    MEMS Piezoelectric Energy Harvester Powered Wireless Sensor Module Driven by Noisy Base Excitation

    Get PDF
    Despite recent advances in MEMS vibration energy harvesting and ultra-low power wireless sensors, designing a wireless sensor system entirely powered by a single MEMS device under noisy base excitation has remained a challenge. This paper presents a wireless sensor system co-integrated with a single MEMS piezoelectric vibration energy harvester chip excited by band-limited large amplitude noisy vibration characteristic of an automotive application. The use of soft stoppers in the MEMS package enables the harvesters to operate at an excitation level of 10 g(rms). A custom thick AlN (Aluminum Nitride) piezoelectric process is employed to fabricate the MEMS harvesters with a single MEMS chip generating 179 μW rectified power under these excitation conditions. A low-power wireless sensor module and a receiver module were also designed and demonstrated in this work. Experiments show that the wireless sensor module can be powered solely by the MEMS energy harvester commencing from the cold state. Successful wireless data transmission and receival of sensor data packets are recorded under representative conditions

    Energy Harvesting Technologies: Thick-Film Piezoelectric Microgenerator

    Get PDF

    Review of Contemporary Energy Harvesting Techniques and Their Feasibility in Wireless Geophones

    Full text link
    Energy harvesting converts ambient energy to electrical energy providing numerous opportunities to realize wireless sensors. Seismic exploration is a prime avenue to benefit from it as energy harvesting equipped geophones would relieve the burden of cables which account for the biggest chunk of exploration cost and equipment weight. Since numerous energies are abundantly available in seismic fields, these can be harvested to power up geophones. However, due to the random and intermittent nature of the harvested energy, it is important that geophones must be equipped to tap from several energy sources for a stable operation. It may involve some initial installation cost but in the long run, it is cost-effective and beneficial as the sources for energy harvesting are available naturally. Extensive research has been carried out in recent years to harvest energies from various sources. However, there has not been a thorough investigation of utilizing these developments in the seismic context. In this survey, a comprehensive literature review is provided on the research progress in energy harvesting methods suitable for direct adaptation in geophones. Specifically, the focus is on small form factor energy harvesting circuits and systems capable of harvesting energy from wind, sun, vibrations, temperature difference, and radio frequencies. Furthermore, case studies are presented to assess the suitability of the studied energy harvesting methods. Finally, a design of energy harvesting equipped geophone is also proposed

    An Integrated Approach to Energy Harvester Modeling and Performance Optimization

    No full text
    This paper proposes an integrated approach to energy harvester (EH) modeling and performance optimization where the complete mixed physical-domain EH (micro generator, voltage booster, storage element and load) can be modeled and optimized. We show that electrical equivalent models of the micro generator are inadequate for accurate prediction of the voltage booster’s performance. Through the use of hardware description language (HDL) we demonstrate that modeling the micro generator with analytical equations in the mechanical and magnetic domains provide an accurate model which has been validated in practice. Another key feature of the integrated approach is that it facilitates the incorporation of performance enhanced optimization, which as will be demonstrated is necessary due to the mechanicalelectrical interactions of an EH. A case study of a state-of-the-art vibration-based electromagnetic EH has been presented. We show that performance optimization can increase the energy harvesting rate by about 40%
    • …
    corecore