12,994 research outputs found

    Comparing Realtime Energy-Optimizing Controllers for Heat Pumps

    Get PDF
    As the vapor compression machine has become more sophisticated (for example, through the adoption of variable speed compressor technology, electronic expansion valves and variable speed fans), the opportunities to improve efficiency are increasingly realized through the control algorithms that operate machine actuators. However, designing control algorithms that minimize energy consumption is not straightforward: the heat load disturbances to be rejected are not measured, the governing dynamics are nonlinear and interactive, and the machine exhibits strong coupling between the multivariate inputs and outputs. Further, many heat pumps must also operate in cooling mode, forcing compromises in sensor locations and actuator selection. This paper compares two controllers for realtime (online) energy optimization of heat pumps. The first energy-optimizing controller is model-based. A custom multi-physical model of the dynamics of a heat pump is developed in the Modelica modeling language and used to obtain the relationship between control inputs and power consumption as a function of the operating conditions. The gradient of this relationship is computed symbolically and used to derive a gradient descent control law that is shown to drive actuator inputs such that the system power consumption is minimized. To address the concern of modeling error on optimization performance, the controller based on a model of a heat pump will be tested on a physical system in an experimental setting for the submitted paper. We expect the convergence rate to be exponential, and will quantify the sensitivity between modeling errors and the non-optimality of the stabilized system. The second approach is model-free and based on the authors\u27 time-varying (TV) and proportional-integral (PI) extremum seeking control (ESC) algorithms. Briefly, extremum seeking controllers use an estimate of the gradient between a plant\u27s manipulated inputs and an objective signal (i.e., power consumption) to steer the system toward an optimum operating point, under the assumption that this relationship is convex. Whereas traditional ESC methods exhibit slow and non-robust convergence, our TV-ESC and PI-ESC methods have demonstrated higher performance due to the estimation routine that tracks the gradient as a time-varying parameter. We expect this algorithm to converge faster than transitional perturbation-based ESC methods (as we have previously demonstrated), but perhaps slower than the model-based approach. However, we expect this controller to converge to a neighborhood around the true optimum since modeling errors are not applicable in this model-free algorithm. The final paper will compare convergence properties of these two methods through experiments obtained on a commercial four-zone heat pump installed in calorimetric-style testing chambers, and the resultant coefficients-of-performance (COPs) will be measured

    Selecting eco-friendly thermal systems for the "Vittoriale Degli Italiani" historic museum building

    Get PDF
    Thermal systems installed in museums should guarantee the maintenance of the optimal hygrothermal parameters ranges for the conservation of their collection materials. Considering the preservation of historic buildings, according to their historical and landscaping constraints, not all the thermal system typologies could be installed in these buildings' typologies. Therefore, the main aim of this paper is to present some indications for the choice of the best thermal system solutions for a considered historic museum building, called Vittoriale degli Italiani, in the north of Italy, taking into account their installation feasibility and their related environmental impacts. The methodology includes a monitoring of the current hygrothermal parameters as well as the assessment of design heat and cooling loads related to the maintenance of the optimal hygrothermal parameters ranges for the conservation of collection materials. In addition, a Life Cycle Assessment (LCA) of each selected system typology is considered for highlighting the most eco-friendly solution among the suitable ones. The obtained results highlights the feasible thermal system solutions able to maintain the hygrothermal parameters between the optimal ranges with a lower environmental impact in the Vittoriale degli Italiani historic museum building

    Screening of energy efficient technologies for industrial buildings' retrofit

    Get PDF
    This chapter discusses screening of energy efficient technologies for industrial buildings' retrofit

    Optimization on fresh outdoor air ratio of air conditioning system with stratum ventilation for both targeted indoor air quality and maximal energy saving

    Get PDF
    Stratum ventilation can energy efficiently provide good inhaled indoor air quality with a proper operation (e.g., fresh outdoor air ratio). However, the non-uniform CO2 distribution in a stratum-ventilated room challenges the provision of targeted indoor air quality. This study proposes an optimization on the fresh outdoor air ratio of stratum ventilation for both the targeted indoor air quality and maximal energy saving. A model of CO2 concentration in the breathing zone is developed by coupling CO2 removal efficiency in the breathing zone and mass conservation laws. With the developed model, the ventilation parameters corresponding to different fresh outdoor air ratios are quantified to achieve the targeted indoor air quality (i.e., targeted CO2 concentration in the breathing zone). Using the fresh outdoor air ratios and corresponding ventilation parameters as inputs, energy performance evaluations of the air conditioning system are conducted by building energy simulations. The fresh outdoor air ratio with the minimal energy consumption is determined as the optimal one. Experiments show that the mean absolute error of the developed model of CO2 concentration in the breathing zone is 1.9%. The effectiveness of the proposed optimization is demonstrated using TRNSYS that the energy consumption of the air conditioning system with stratum ventilation is reduced by 6.4% while achieving the targeted indoor air quality. The proposed optimization is also promising for other ventilation modes for targeted indoor air quality and improved energy efficiency

    Variable Frequency Drive Applications in HVAC Systems

    Get PDF
    Building heating ventilation and air-conditioning (HVAC) systems are designed to operate at the peak load, which only occurs in a very short period of time throughout the year. One of the most effective ways to improve building energy efficiency is to utilize the variable frequency drives (VFDs). They are widely used in the HVAC field, including fans, pumps, compressors, etc. In a VFD-equipped system, the VFD adjusts the speed of one or more motors based on the system load requirements and operation schedule, resulting in a dramatic cut in energy consumption

    Air and Water Flowrate Optimisation for a Fan Coil Unit in Heat Pump Systems

    Get PDF
    The degradation in efficiency of auxiliary components in heating/cooling systems when operating at part load is frequently reported. Through the use of variable speed components, the supplied capacity can be reduced to match the required load and hence reduce unnecessary energy consumption. However, for fan coil units, difficulties can arise when optimizing fan and pump speeds at part load. Practically locating optimal water and air flow rates from readily available information and for varying supplied capacities is necessary, in order to reduce the fan coil power consumption. This research attempts to identify whether optimal fan and pump speeds exist for a fan coil unit and how they can be implemented, in a practical manner, in a system control applications. Using an empirical fan coil and pump model, the total power consumption (fan and pump) for different combinations of fan and pump speeds over a range of capacities was calculated. It was observed that, for a given capacity, an optimal combination of fan and pump speeds exists and there was a significant change in power consumption for different combinations of fan and pump speeds supplying the same capacity. A control strategy is described that utilizes a simple fan coil capacity estimation model, coupled with air and water flow rates, along with nominal design data. The pump speed is optimized using PID control to maintain the space temperature at the chosen set-point, which matches the supplied capacity to the required capacity. At set-time intervals, the capacity estimation model is utilized to optimize the water and air flow rates for the required capacity. The control strategy is evaluated, using a full building simulation model for a daily load profile and is compared to two baseline conditions: for no control of the fancoils/pump combination and for PID circulation control of the pump only. The optimal fan and pump speed control resulted in a 43% and 24% decrease in power consumption with compared to the no control baseline and the PID controlled circulation pump strategy, respectively

    Optimizing production efficiencies of hot water units using building energy simulations : trade-off between Legionella pneumophila contamination risk and energy efficiency

    Get PDF
    The energy needed for domestic hot water represents an important share in the total energy use of well-insulated and airtight buildings. One of the main reasons for this high energy demand is that hot water is produced at temperatures above 60°C to mitigate the risk of contaminating the hot water system with Legionella pneumophila. However, this elevated temperature is not necessary for most domestic hot water applications, and has a negative effect on the efficiency of hot water production units. A simulation model has been developed which proposes an alternative to this constant 60°C by predicting the Legionella pneumophila concentration dynamically throughout the hot water system. Based on this knowledge, a hot water controller is added to the simulation model that sets a lower hot water comfort temperature in combination with heat shocks. In this paper, the simulation model is used to estimate the energy saving potential in a case study building, at the level of the heat production system by reaching higher production efficiencies. Three different production units, namely an electric boiler, heat pump and solar collector have been investigated. The controller is expected to become an alternative for the current, energy intensive, high temperature tap water heating systems

    Computational tools for low energy building design : capabilities and requirements

    Get PDF
    Integrated building performance simulation (IBPS) is an established technology, with the ability to model the heat, mass, light, electricity and control signal flows within complex building/plant systems. The technology is used in practice to support the design of low energy solutions and, in Europe at least, such use is set to expand with the advent of the Energy Performance of Buildings Directive, which mandates a modelling approach to legislation compliance. This paper summarises IBPS capabilities and identifies developments that aim to further improving integrity vis-à-vis the reality
    • …
    corecore