89 research outputs found

    Power minimization for OFDM Transmission with Subcarrier-pair based Opportunistic DF Relaying

    Full text link
    This paper develops a sum-power minimized resource allocation (RA) algorithm subject to a sum-rate constraint for cooperative orthogonal frequency division modulation (OFDM) transmission with subcarrier-pair based opportunistic decode-and-forward (DF) relaying. The improved DF protocol first proposed in [1] is used with optimized subcarrier pairing. Instrumental to the RA algorithm design is appropriate definition of variables to represent source/relay power allocation, subcarrier pairing and transmission-mode selection elegantly, so that after continuous relaxation, the dual method and the Hungarian algorithm can be used to find an (at least approximately) optimum RA with polynomial complexity. Moreover, the bisection method is used to speed up the search of the optimum Lagrange multiplier for the dual method. Numerical results are shown to illustrate the power-reduction benefit of the improved DF protocol with optimized subcarrier pairing.Comment: 4 pages, accepted by IEEE Communications Letter

    Weighted Sum Rate Maximization for Downlink OFDMA with Subcarrier-pair based Opportunistic DF Relaying

    Full text link
    This paper addresses a weighted sum rate (WSR) maximization problem for downlink OFDMA aided by a decode-and-forward (DF) relay under a total power constraint. A novel subcarrier-pair based opportunistic DF relaying protocol is proposed. Specifically, user message bits are transmitted in two time slots. A subcarrier in the first slot can be paired with a subcarrier in the second slot for the DF relay-aided transmission to a user. In particular, the source and the relay can transmit simultaneously to implement beamforming at the subcarrier in the second slot. Each unpaired subcarrier in either the first or second slot is used for the source's direct transmission to a user. A benchmark protocol, same as the proposed one except that the transmit beamforming is not used for the relay-aided transmission, is also considered. For each protocol, a polynomial-complexity algorithm is developed to find at least an approximately optimum resource allocation (RA), by using continuous relaxation, the dual method, and Hungarian algorithm. Instrumental to the algorithm design is an elegant definition of optimization variables, motivated by the idea of regarding the unpaired subcarriers as virtual subcarrier pairs in the direct transmission mode. The effectiveness of the RA algorithm and the impact of relay position and total power on the protocols' performance are illustrated by numerical experiments. The proposed protocol always leads to a maximum WSR equal to or greater than that for the benchmark one, and the performance gain of using the proposed one is significant especially when the relay is in close proximity to the source and the total power is low. Theoretical analysis is presented to interpret these observations.Comment: 8 figures, accepted and to be published in IEEE Transactions on Signal Processing. arXiv admin note: text overlap with arXiv:1301.293

    Novel Subcarrier-pair based Opportunistic DF Protocol for Cooperative Downlink OFDMA

    Full text link
    A novel subcarrier-pair based opportunistic DF protocol is proposed for cooperative downlink OFDMA transmission aided by a decode-and-forward (DF) relay. Specifically, user message bits are transmitted in two consecutive equal-duration time slots. A subcarrier in the first slot can be paired with a subcarrier in the second slot for the DF relay-aided transmission to a user. In particular, the source and the relay can transmit simultaneously to implement beamforming at the subcarrier in the second slot for the relay-aided transmission. Each unpaired subcarrier in either the first or second slot is used by the source for direct transmission to a user without the relay's assistance. The sum rate maximized resource allocation (RA) problem is addressed for this protocol under a total power constraint. It is shown that the novel protocol leads to a maximum sum rate greater than or equal to that for a benchmark one, which does not allow the source to implement beamforming at the subcarrier in the second slot for the relay-aided transmission. Then, a polynomial-complexity RA algorithm is developed to find an (at least approximately) optimum resource allocation (i.e., source/relay power, subcarrier pairing and assignment to users) for either the proposed or benchmark protocol. Numerical experiments illustrate that the novel protocol can lead to a much greater sum rate than the benchmark one.Comment: 6 pages, accepted by 2013 IEEE Wireless Communications and Networking Conferenc

    Enhancing Physical Layer Security in AF Relay Assisted Multi-Carrier Wireless Transmission

    Full text link
    In this paper, we study the physical layer security (PLS) problem in the dual hop orthogonal frequency division multiplexing (OFDM) based wireless communication system. First, we consider a single user single relay system and study a joint power optimization problem at the source and relay subject to individual power constraint at the two nodes. The aim is to maximize the end to end secrecy rate with optimal power allocation over different sub-carriers. Later, we consider a more general multi-user multi-relay scenario. Under high SNR approximation for end to end secrecy rate, an optimization problem is formulated to jointly optimize power allocation at the BS, the relay selection, sub-carrier assignment to users and the power loading at each of the relaying node. The target is to maximize the overall security of the system subject to independent power budget limits at each transmitting node and the OFDMA based exclusive sub-carrier allocation constraints. A joint optimization solution is obtained through duality theory. Dual decomposition allows to exploit convex optimization techniques to find the power loading at the source and relay nodes. Further, an optimization for power loading at relaying nodes along with relay selection and sub carrier assignment for the fixed power allocation at the BS is also studied. Lastly, a sub-optimal scheme that explores joint power allocation at all transmitting nodes for the fixed subcarrier allocation and relay assignment is investigated. Finally, simulation results are presented to validate the performance of the proposed schemes.Comment: 10 pages, 7 figures, accepted in Transactions on Emerging Telecommunications Technologies (ETT), formerly known as European Transactions on Telecommunications (ETT

    Low Complexity Joint Sub-Carrier Pairing, Allocation and Relay Selection in Cooperative Wireless Networks

    Get PDF
    Multi-carrier cooperative relay-based wireless communication is of particular interest in future wireless networks. In this paper we present resource allocation algorithm in which sub-carrier pairing is of particular interest along with fairness constraint in multi-user networks. An optimization of sub-carrier pair selection is formulated through capacity maximization problem. Sub-carrier pairing is applied in both two-hop Amplify & Forward (AF) and Decode & Forward (DF) cooperative multi-user networks. We develop a less complex centralized scheme for joint Sub-carrier pairing and allocation along with relay selection. The computational complexity of the proposed algorithms has been analyzed and performance is compared with Exhaustive Search Algorithm

    Adaptive relaying protocol multiple-input multiple-output orthogonal frequency division multiplexing systems

    Get PDF
    In wireless broadband communications, orthogonal frequency division multiplexing (OFDM) has been adopted as a promising technique to mitigate multi-path fading and provide high spectral efficiency. In addition, cooperative communication can explore spatial diversity where several users or nodes share their resources and cooperate through distributed transmission. The concatenation of the OFDM technique with relaying systems can enhance the overall performance in terms of spectral efficiency and improve robustness against the detrimental effects of fading. Hybrid relay selection is proposed to overcome the drawbacks of conventional forwarding schemes. However, exciting hybrid relay protocols may suffer some limitations when used for transmission over frequency-selective channels. The combination of cooperative protocols with OFDM systems has been extensively utilized in current wireless networks, and have become a promising solution for future high data rate broadband communication systems including 3D video transmission. This thesis covers two areas of high data rate networks. In the first part, several techniques using cooperative OFDM systems are presented including relay selection, space time block codes, resource allocation and adaptive bit and power allocation to introduce diversity. Four (4) selective OFDM relaying schemes are studied over wireless networks; selective OFDM; selective OFDMA; selective block OFDM and selective unequal block OFDM. The closed-form expression of these schemes is derived. By exploiting the broadcast nature, it is demonstrated that spatial diversity can be improved. The upper bound of outage probability for the protocols is derived. A new strategy for hybrid relay selection is proposed to improve the system performance by removing the sub-carriers that experience deep fading. The per subcarrier basis selection is considered with respect to the predefined threshold signal-to-noise ratio. The closed-form expressions of the proposed protocol in terms of bit error probability and outage probability are derived and compared with conventional hybrid relay selection. Adaptive bit and power allocation is also discussed to improve the system performance. Distributed space frequency coding applied to hybrid relay selection to obtain full spatial and full data rate transmission is explored. Two strategies, single cluster and multiple clusters, are considered for the Alamouti code at the destination by using a hybrid relay protocol. The power allocation with and without sub-carrier pairing is also investigated to mitigate the effect of multipath error propagation in frequency-selective channels. The second part of this thesis investigates the application of cooperative OFDM systems to high data rate transmission. Recently, there has been growing attention paid to 3D video transmission over broadband wireless channels. Two strategies for relay selection hybrid relay selection and first best second best are proposed to implement unequal error protection in the physical layer over error prone channels. The closed-form expressions of bit error probability and outage probability for both strategies are examined. The peak signal-to-noise ratio is presented to show the quality of reconstruction of the left and right views
    corecore