1,845 research outputs found

    Multi-Criteria Coordinated Electric Vehicle-Drone Hybrid Delivery Service Planning

    Get PDF
    According to recent works, a coordinated delivery strategy in which terrestrial and aerial electric vehicles work together effectively improves delivery throughput and energy efficiency. However, most research on logistics and transportation focuses on delivery performance and does not care about energy efficiency, with three main limitations: 1. Most of these works ignore geographic information along the delivery route, while road slope is one of the most critical energy consumption components. 2. Vehicle and drone power consumption models are simplified as driving mileage, while the delivery time is a significant concern. 3. The battery model is simplified as a linear model even though practical batteries have non-linearity properties. This work proposes a framework to provide energy- and time-efficient delivery schedules with a hybrid delivery service with terrestrial and aerial electric vehicles. We first implement accurate electric van and drone power models and a battery model based on manufacturers' system specifications and experimental data. Then, we propose a heuristic delivery scheduling algorithm to determine the electric van and drone delivery schedule. We also introduce various cost functions to evaluate the delivery scheduling results regarding time, energy, the weighted sum of time and energy, and the economic model. The proposed framework is validated on randomly implemented delivery missions and delivery scenarios in existing cities. Results indicate that the coordinated delivery saves delivery costs up to 27.25% in terms of the economic model compared with the electric van-only delivery schedule

    A multi-factor model for range estimation in electric vehicles

    Get PDF
    Electric vehicles (EVs) are well-known for their challenges related to trip planning and energy consumption estimation. Range anxiety is currently a barrier to the adoption of EVs. One of the issues influencing range anxiety is the inaccuracy of the remaining driving range (RDR) estimate in on-board displays. RDR displays are important as they can help drivers with trip planning. The RDR is a parameter that changes under environmental and behavioural conditions. Several factors (for example, weather, and traffic) can influence the energy consumption of an EV that are not considered during the RDR estimation in traditional on-board computers or third-party applications, such as navigation or mapping applications. The need for accurate RDR estimation is growing, since this can reduce the range anxiety of drivers. One way of overcoming range anxiety is to provide trip planning applications that provide accurate estimations of the RDR, based on various factors, and which adapt to the users’ driving behaviour. Existing models used for estimating the RDR are often simplified, and do not consider all the factors that can influence it. Collecting data for each factor also presents several challenges. Powerful computing resources are required to collect, transform, and analyse the disparate datasets that are required for each factor. The aim of this research was to design a Multi-factor Model for range estimation in EVs. Five main factors that influence the energy consumption of EVs were identified from literature, namely, Route and Terrain, Driving Behaviour, Weather and Environment, Vehicle Modelling, and Battery Modelling. These factors were used throughout this research to guide the data collection and analysis processes. A Multi-factor Model was proposed based on four main components that collect, process, analyse, and visualise data from available data sources to produce estimates relating to trip planning. A proof-of-concept RDR system was developed and evaluated in field experiments, to demonstrate that the Multi-factor Model addresses the main aim of this research. The experiments were performed to collect data for each of the five factors, and to analyse their impact on energy consumption. Several machine learning techniques were used, and evaluated, for accuracy in estimating the energy consumption, from which the RDR can be derived, for a specified trip. A case study was conducted with an electric mobility programme (uYilo) in Port Elizabeth, South Africa (SA). The case study was used to investigate whether the available resources at uYilo were sufficient to provide data for each of the five factors. Several challenges were noted during the data collection. These were shortages of software applications, a lack of quality data, technical interoperability and data access between the data collection instruments and systems. Data access was a problem in some cases, since proprietary systems restrict access to external developers. The theoretical contribution of this research is a list of factors that influence RDR and a classification of machine learning techniques that can be used to estimate the RDR. The practical contributions of this research include a database of EV trips, proof-of-concept RDR estimation system, and a deployed machine learning model that can be accessed by researchers and EV practitioners. Four research papers were published and presented at local and international conferences. In addition, one conference paper was published in an accredited journal: NextComp 2017 (Appendix C), Conference Paper, Pointe aux Piments (Mauritius); SATNAC 2017 (Appendix F), Conference Paper, Barcelona (Spain); GITMA 2018 (Appendix B), Conference Paper, Mexico City (Mexico); SATNAC 2018 (Appendix G), Conference Paper, George (South Africa), and IFIP World Computer Congress 2018 (Appendix E), Journal Article

    Project and Development of a Reinforcement Learning Based Control Algorithm for Hybrid Electric Vehicles

    Get PDF
    Hybrid electric vehicles are, nowadays, considered as one of the most promising technologies for reducing on-road greenhouse gases and pollutant emissions. Such a goal can be accomplished by developing an intelligent energy management system which could lead the powertrain to exploit its maximum energetic performances under real-world driving conditions. According to the latest research in the field of control algorithms for hybrid electric vehicles, Reinforcement Learning has emerged between several Artificial Intelligence approaches as it has proved to retain the capability of producing near-optimal solutions to the control problem even in real-time conditions. Nevertheless, an accurate design of both agent and environment is needed for this class of algorithms. Within this paper, a detailed plan for the complete project and development of an energy management system based on Q-learning for hybrid powertrains is discussed. An integrated modular software framework for co-simulation has been developed and it is thoroughly described. Finally, results have been presented about a massive testing of the agent aimed at assessing for the change in its performance when different training parameters are considered

    Development of a Supervisory Control Unit for a Series Plug-in Hybrid Electric Vehicle

    Get PDF
    A Series PHEV was chosen, as ERAU\u27s entry into EcoCAR2 through a multidisciplinary architecture selection process. The series architecture was chosen for its mechanical feasibility, consumer acceptability and its performance on energy consumption simulations. The Series PHEV architecture was modeled using Matlab, Simulink, and dSPACE ASM tools, to create a plant model for controller development. A supervisory controller was developed to safely control the interactions between powertrain components. The supervisory control unit was tested using SIL and HIL methodologies. The supervisory controller was developed with an emphasis on fault detection and mitigation for safety critical systems. A power management control algorithm was developed to efficiently control the vehicle during charge sustaining operation. The first controller implemented was a simplified bang-bang controller to operate at the global minimum BSFC. A power-tracking controller was then developed to minimize powertrain losses. The power-tracking controller substantially reduced the vehicles energy consumption on simulated EPA drive cycles

    12th EASN International Conference on "Innovation in Aviation & Space for opening New Horizons"

    Get PDF
    Epoxy resins show a combination of thermal stability, good mechanical performance, and durability, which make these materials suitable for many applications in the Aerospace industry. Different types of curing agents can be utilized for curing epoxy systems. The use of aliphatic amines as curing agent is preferable over the toxic aromatic ones, though their incorporation increases the flammability of the resin. Recently, we have developed different hybrid strategies, where the sol-gel technique has been exploited in combination with two DOPO-based flame retardants and other synergists or the use of humic acid and ammonium polyphosphate to achieve non-dripping V-0 classification in UL 94 vertical flame spread tests, with low phosphorous loadings (e.g., 1-2 wt%). These strategies improved the flame retardancy of the epoxy matrix, without any detrimental impact on the mechanical and thermal properties of the composites. Finally, the formation of a hybrid silica-epoxy network accounted for the establishment of tailored interphases, due to a better dispersion of more polar additives in the hydrophobic resin

    Reviewing energy system modelling of decentralized energy autonomy

    Get PDF
    Research attention on decentralized autonomous energy systems has increased exponentially in the past three decades, as demonstrated by the absolute number of publications and the share of these studies in the corpus of energy system modelling literature. This paper shows the status quo and future modelling needs for research on local autonomous energy systems. A total of 359 studies are roughly investigated, of which a subset of 123 in detail. The studies are assessed with respect to the characteristics of their methodology and applications, in order to derive common trends and insights. Most case studies apply to middle-income countries and only focus on the supply of electricity in the residential sector. Furthermore, many of the studies are comparable regarding objectives and applied methods. Local energy autonomy is associated with high costs, leading to levelized costs of electricity of 0.41 $/kWh on average. By analysing the studies, many improvements for future studies could be identified: the studies lack an analysis of the impact of autonomous energy systems on surrounding energy systems. In addition, the robust design of autonomous energy systems requires higher time resolutions and extreme conditions. Future research should also develop methodologies to consider local stakeholders and their preferences for energy systems
    • …
    corecore