1,858 research outputs found

    Multiphase induction motor drives - a technology status review

    Get PDF
    The area of multiphase variable-speed motor drives in general and multiphase induction motor drives in particular has experienced a substantial growth since the beginning of this century. Research has been conducted worldwide and numerous interesting developments have been reported in the literature. An attempt is made to provide a detailed overview of the current state-of-the-art in this area. The elaborated aspects include advantages of multiphase induction machines, modelling of multiphase induction machines, basic vector control and direct torque control schemes and PWM control of multiphase voltage source inverters. The authors also provide a detailed survey of the control strategies for five-phase and asymmetrical six-phase induction motor drives, as well as an overview of the approaches to the design of fault tolerant strategies for post-fault drive operation, and a discussion of multiphase multi-motor drives with single inverter supply. Experimental results, collected from various multiphase induction motor drive laboratory rigs, are also included to facilitate the understanding of the drive operatio

    Machine Learning based Early Fault Diagnosis of Induction Motor for Electric Vehicle Application

    Get PDF
    Electrified vehicular industry is growing at a rapid pace with a global increase in production of electric vehicles (EVs) along with several new automotive cars companies coming to compete with the big car industries. The technology of EV has evolved rapidly in the last decade. But still the looming fear of low driving range, inability to charge rapidly like filling up gasoline for a conventional gas car, and lack of enough EV charging stations are just a few of the concerns. With the onset of self-driving cars, and its popularity in integrating them into electric vehicles leads to increase in safety both for the passengers inside the vehicle as well as the people outside. Since electric vehicles have not been widely used over an extended period of time to evaluate the failure rate of the powertrain of the EV, a general but definite understanding of motor failures can be developed from the usage of motors in industrial application. Since traction motors are more power dense as compared to industrial motors, the possibilities of a small failure aggravating to catastrophic issue is high. Understanding the challenges faced in EV due to stator fault in motor, with major focus on induction motor stator winding fault, this dissertation presents the following: 1. Different Motor Failures, Causes and Diagnostic Methods Used, With More Importance to Artificial Intelligence Based Motor Fault Diagnosis. 2. Understanding of Incipient Stator Winding Fault of IM and Feature Selection for Fault Diagnosis 3. Model Based Temperature Feature Prediction under Incipient Fault Condition 4. Design of Harmonics Analysis Block for Flux Feature Prediction 5. Flux Feature based On-line Harmonic Compensation for Fault-tolerant Control 6. Intelligent Flux Feature Predictive Control for Fault-Tolerant Control 7. Introduction to Machine Learning and its Application for Flux Reference Prediction 8. Dual Memorization and Generalization Machine Learning based Stator Fault Diagnosi

    Critical Aspects of Electric Motor Drive Controllers and Mitigation of Torque Ripple - Review

    Get PDF
    Electric vehicles (EVs) are playing a vital role in sustainable transportation. It is estimated that by 2030, Battery EVs will become mainstream for passenger car transportation. Even though EVs are gaining interest in sustainable transportation, the future of EV power transmission is facing vital concerns and open research challenges. Considering the case of torque ripple mitigation and improved reliability control techniques in motors, many motor drive control algorithms fail to provide efficient control. To efficiently address this issue, control techniques such as Field Orientation Control (FOC), Direct Torque Control (DTC), Model Predictive Control (MPC), Sliding Mode Control (SMC), and Intelligent Control (IC) techniques are used in the motor drive control algorithms. This literature survey exclusively compares the various advanced control techniques for conventionally used EV motors such as Permanent Magnet Synchronous Motor (PMSM), Brushless Direct Current Motor (BLDC), Switched Reluctance Motor (SRM), and Induction Motors (IM). Furthermore, this paper discusses the EV-motors history, types of EVmotors, EV-motor drives powertrain mathematical modelling, and design procedure of EV-motors. The hardware results have also been compared with different control techniques for BLDC and SRM hub motors. Future direction towards the design of EV by critical selection of motors and their control techniques to minimize the torque ripple and other research opportunities to enhance the performance of EVs are also presented.publishedVersio

    POWER QUALITY CONTROL AND COMMON-MODE NOISE MITIGATION FOR INVERTERS IN ELECTRIC VEHICLES

    Get PDF
    Inverters are widely utilized in electric vehicle (EV) applications as a major voltage/current source for onboard battery chargers (OBC) and motor drive systems. The inverter performance is critical to the efficiency of EV system energy conversion and electronics system electro-magnetic interference (EMI) design. However, for AC systems, the bandwidth requirement is usually low compared with DC systems, and the control impact on the inverter differential-mode (DM) and common-mode (CM) performance are not well investigated. With the wide-band gap (WBG) device era, the switching capability of power electronics devices drastically improved. The DM/CM impact that was brought by the WBG device-based inverter becomes more serious and has not been completely understood. This thesis provides an in-depth analysis of on-board inverter control strategies and the corresponding DM/CM impact on the EV system. The OBC inverter control under vehicle-to-load (V2L) mode will be documented first. A virtual resistance damping method minimizes the nonlinear load harmonics, and a neutral balancing method regulates the unbalanced load impact through the fourth leg. In the motor drive system, a generalized CM voltage analytical model and a current ripple prediction model are built for understanding the system CM and DM stress with respect to different modulation methods, covering both 2-level and 3-level topologies. A novel CM EMI damping modulation scheme is proposed for 6-phase inverter applications. The performance comparison between the proposed methods and the conventional solution is carried out. Each topic is supported by the corresponding hardware platform and experimental validation

    Design and Application of Electrical Machines

    Get PDF
    Electrical machines are one of the most important components of the industrial world. They are at the heart of the new industrial revolution, brought forth by the development of electromobility and renewable energy systems. Electric motors must meet the most stringent requirements of reliability, availability, and high efficiency in order, among other things, to match the useful lifetime of power electronics in complex system applications and compete in the market under ever-increasing pressure to deliver the highest performance criteria. Today, thanks to the application of highly efficient numerical algorithms running on high-performance computers, it is possible to design electric machines and very complex drive systems faster and at a lower cost. At the same time, progress in the field of material science and technology enables the development of increasingly complex motor designs and topologies. The purpose of this Special Issue is to contribute to this development of electric machines. The publication of this collection of scientific articles, dedicated to the topic of electric machine design and application, contributes to the dissemination of the above information among professionals dealing with electrical machines

    Extension of Finite-Control Set Model-Based Predictive Control Techniques to Fault-Tolerant Multiphase Drives: Analysis and Contributions

    Get PDF
    Las máquinas eléctricas son una de las principales tecnologías que hacen posible las energías renovables y los vehículos eléctricos. La necesidad constante de incrementar la capacidad de potencia para generar más energía o para impulsar vehículos cada vez más grandes, ha motivado la investigación y el desarrollo en el área de las máquinas multifásicas las cuales, gracias a su número de fases, permiten no sólo manejar más potencia con menos pulsaciones de par y contenido armónico en la corriente que las máquinas trifásicas convencionales, sino que también permiten obtener una mayor tolerancia a fallos, aumentando el interés de su implementación en aplicaciones donde la fiabilidad juega un papel importante por razones económicas y de seguridad. La investigación más reciente en el área de sistemas multifásicos se centra en el desarrollo de técnicas que permitan explotar las características específicas y especiales de las máquinas multifásicas, viendo el incremento en el número de fases no como un aumento en la complejidad de implementación, sino como un mayor número de grados de libertad tanto en el diseño como en el control, permitiendo mejorar sus prestaciones y fiabilidad, haciéndolas más atractivas para su uso en aplicaciones industriales. Es así como se han desarrollado técnicas de control que permitan operar a alta velocidad o alto par, tolerancia a diferentes tipos de fallos y máquinas con diferentes conexionados de devanados o con sistemas formados por múltiples variadores y máquinas. El objetivo de esta tesis doctoral es la extensión del control predictivo para máquinas multifásicas (específicamente el control predictivo de estados finitos basado en modelo o FCS-MPC por sus siglas en inglés) a la operación tolerante a fallos, aprovechando la capacidad de tolerancia a fallos que las máquinas multifásicas poseen, asegurando su funcionamiento de una manera eficiente y controlada. Con este fin se estudió el modelo matemático de la máquina en condiciones de pre- y post- falta considerando diferentes tipos de faltas, permitiendo establecer el efecto que las condiciones de fallo tienen en el comportamiento del sistema. Se desarrollaron modelos de simulación de una máquina de inducción de cinco fases, considerando faltas de fase abierta y en el disparo de los IGBT’s de una fase, permitiendo el diseño y validación del controlador FCS-MPC tolerante a fallos, cuyos resultados obtenidos fueron presentados en diversos congresos internacionales. La posterior implementación y validación experimental del control tolerante a fallos propuesto dio lugar a la publicación de dos de los artículos científicos presentados en esta tesis. Del mismo modo, se desarrolló un control tolerante a fallos basado en controladores lineales (de tipo resonante), teniendo en cuenta los esquemas propuestos en publicaciones científicas recientes y se realizó una comparativa entre el control tolerante a fallos basado en FCS-MPC y el controlador resonante ante un fallo de fase abierta, mediante resultados de simulación y experimentales, dando lugar a la publicación en un congreso internacional y en un artículo de revista científica. Las contribuciones de esta tesis doctoral se han publicado en la revista científica IEEE Transactions on Industrial Electronics entre los años 2013/2015

    Advances in Rotating Electric Machines

    Get PDF
    It is difficult to imagine a modern society without rotating electric machines. Their use has been increasing not only in the traditional fields of application but also in more contemporary fields, including renewable energy conversion systems, electric aircraft, aerospace, electric vehicles, unmanned propulsion systems, robotics, etc. This has contributed to advances in the materials, design methodologies, modeling tools, and manufacturing processes of current electric machines, which are characterized by high compactness, low weight, high power density, high torque density, and high reliability. On the other hand, the growing use of electric machines and drives in more critical applications has pushed forward the research in the area of condition monitoring and fault tolerance, leading to the development of more reliable diagnostic techniques and more fault-tolerant machines. This book presents and disseminates the most recent advances related to the theory, design, modeling, application, control, and condition monitoring of all types of rotating electric machines

    Space Vector Modulation applied to a split phase winding of a PMSM

    Get PDF
    In questa tesi un metodo sperimentale è presentato per aumentare il range di velocità di una macchina a magneti permanenti superficiali. Sono stati presentati sia i vantaggi sia gli svantaggi di questa tecnica. Il progetto ha richiesto di modellizzare il motore e il sistema di controllo per poi effettuare le varie simulazioni

    New trends in electrical vehicle powertrains

    Get PDF
    The electric vehicle and plug-in hybrid electric vehicle play a fundamental role in the forthcoming new paradigms of mobility and energy models. The electrification of the transport sector would lead to advantages in terms of energy efficiency and reduction of greenhouse gas emissions, but would also be a great opportunity for the introduction of renewable sources in the electricity sector. The chapters in this book show a diversity of current and new developments in the electrification of the transport sector seen from the electric vehicle point of view: first, the related technologies with design, control and supervision, second, the powertrain electric motor efficiency and reliability and, third, the deployment issues regarding renewable sources integration and charging facilities. This is precisely the purpose of this book, that is, to contribute to the literature about current research and development activities related to new trends in electric vehicle power trains.Peer ReviewedPostprint (author's final draft

    Multi-Criteria Performance Evaluation and Control in Power and Energy Systems

    Get PDF
    The role of intuition and human preferences are often overlooked in autonomous control of power and energy systems. However, the growing operational diversity of many systems such as microgrids, electric/hybrid-electric vehicles and maritime vessels has created a need for more flexible control and optimization methods. In order to develop such flexible control methods, the role of human decision makers and their desired performance metrics must be studied in power and energy systems. This dissertation investigates the concept of multi-criteria decision making as a gateway to integrate human decision makers and their opinions into complex mathematical control laws. There are two major steps this research takes to algorithmically integrate human preferences into control environments: MetaMetric (MM) performance benchmark: considering the interrelations of mathematical and psychological convergence, and the potential conflict of opinion between the control designer and end-user, a novel holistic performance benchmark, denoted as MM, is developed to evaluate control performance in real-time. MM uses sensor measurements and implicit human opinions to construct a unique criterion that benchmarks the system\u27s performance characteristics. MM decision support system (DSS): the concept of MM is incorporated into multi-objective evolutionary optimization algorithms as their DSS. The DSS\u27s role is to guide and sort the optimization decisions such that they reflect the best outcome desired by the human decision-maker and mathematical considerations. A diverse set of case studies including a ship power system, a terrestrial power system, and a vehicular traction system are used to validate the approaches proposed in this work. Additionally, the MM DSS is designed in a modular way such that it is not specific to any underlying evolutionary optimization algorithm
    corecore