1,361 research outputs found

    Turbo receivers for interleave-division multiple-access systems

    Get PDF
    In this paper several turbo receivers for Interleave-Division Multiple-Access (IDMA) systems will be discussed. The multiple access system model is presented first. The optimal, Maximum A Posteriori (MAP) algorithm, is then presented. It will be shown that the use of a precoding technique at the emitter side is applicable to IDMA systems. Several low complexity Multi-User Detector (MUD), based on the Gaussian approximation, will be next discussed. It will be shown that the MUD with Probabilistic Data Association (PDA) algorithm provides faster convergence of the turbo receiver. The discussed turbo receivers will be evaluated by means of Bit Error Rate (BER) simulations and EXtrinsic Information Transfer (EXIT) charts

    Self-concatenated code design and its application in power-efficient cooperative communications

    No full text
    In this tutorial, we have focused on the design of binary self-concatenated coding schemes with the help of EXtrinsic Information Transfer (EXIT) charts and Union bound analysis. The design methodology of future iteratively decoded self-concatenated aided cooperative communication schemes is presented. In doing so, we will identify the most important milestones in the area of channel coding, concatenated coding schemes and cooperative communication systems till date and suggest future research directions

    Minimum mean-squared error iterative successive parallel arbitrated decision feedback detectors for DS-CDMA systems

    Get PDF
    In this paper we propose minimum mean squared error (MMSE) iterative successive parallel arbitrated decision feedback (DF) receivers for direct sequence code division multiple access (DS-CDMA) systems. We describe the MMSE design criterion for DF multiuser detectors along with successive, parallel and iterative interference cancellation structures. A novel efficient DF structure that employs successive cancellation with parallel arbitrated branches and a near-optimal low complexity user ordering algorithm are presented. The proposed DF receiver structure and the ordering algorithm are then combined with iterative cascaded DF stages for mitigating the deleterious effects of error propagation for convolutionally encoded systems with both Viterbi and turbo decoding as well as for uncoded schemes. We mathematically study the relations between the MMSE achieved by the analyzed DF structures, including the novel scheme, with imperfect and perfect feedback. Simulation results for an uplink scenario assess the new iterative DF detectors against linear receivers and evaluate the effects of error propagation of the new cancellation methods against existing ones

    Superposition Coding Aided Bi-directional Relay Transmission Employing Iteratively Decoded Self-Concatenated Convolutional Codes

    No full text
    In this paper, we consider coding schemes designed for two nodes communicating with each other with the aid of a relay node, which receives information from the two nodes in the first time slot. At the relay node we combine a powerful Superposition Coding (SPC) scheme with Iteratively Decoded Self-Concatenated Convolutional Codes (SECCC-ID), which exchange mutual information between each other. It is assumed that decoding errors may be encountered at the relay node. The relay node then broadcasts this information in the second time slot after re-encoding it, again, using a SECCC encoder. At the destination, an amalgamated SPC-SECCC block then detects and decodes the signal either with or without the aid of a priori information. Our simulation results demonstrate that the proposed scheme is capable of reliably operating at a low BER for transmission over both AWGN and uncorrelated Rayleigh fading channels. We compare the proposed scheme’s performance to a direct transmission link between the two sources having the same throughput. Additionally, the SPC-SECCC system achieves a low BER even for realistic error-infested relaying

    Parallel Interference Cancellation Based Turbo Space-Time Equalization in the SDMA Uplink

    No full text
    A novel Parallel Interference Cancellation (PIC) based turbo Space Time Equalizer (STE) structure designed for multiple antenna assisted uplink receivers is introduced. The proposed receiver structure allows the employment of non-linear type of detectors such as the Bayesian Decision Feedback (DF) assisted turbo STE or the Maximum Aposteriori (MAP) STE, while operating at a moderate computational cost. Receivers based on the proposed structure outperform the linear turbo detector benchmarker based on the Minimum Mean-Squared Error (MMSE) criterion, even if the latter aims for jointly detecting all transmitters’ signals. Additionally the PIC based receiver is capable of equalizing non-linear binary pre-coded channels. The performance difference between the presented algorithms is discussed using Extrinsic Information Transferfunction (EXIT) charts. Index Terms—PIC, EXIT chart, precoding, Bayesian, STE

    Interleaving Gains for Receive Diversity Schemes of Distributed Turbo Codes in Wireless Half–Duplex Relay Channels

    Get PDF
    This paper proposes the interleaving gain in two different distributed turbo-coding schemes: Distributed Turbo Codes (DTC) and Distributed Multiple Turbo Codes (DMTC) for half-duplex relay system as an extension of our previous work on turbo coding interleaver design for direct communication channel. For these schemes with half-duplex constraint, the source node transmits its information with the parity bit sequence(s) to both the relay and the destination nodes during the first phase. The relay received the data from the source and process it by using decode and forward protocol. For the second transmission period, the decoded systematic data at relay is interleaved and re-encoded by a Recursive Systematic Convolutional (RSC) encoder and forwarded to the destination. At destination node, the signals received from the source and relay are processed by using turbo log-MAP iterative decoding for retrieving the original information bits. We demonstrate via simulations that the interleaving gain has a large effect with DTC scheme when we use only one RSC encoder at both the source and relay with best performance when using Modified Matched S-Random (MMSR) interleaver. Furthermore, by designing a Chaotic Pseudo Random Interleaver (CPRI) as an outer interleaver at the source node instead of classical interleavers, our scheme can add more secure channel conditions

    The application of iterative equalisation to high data rate wireless personal area networks

    Get PDF
    corecore