725 research outputs found

    Cooperative medium access control based on spectrum leasing

    No full text
    Based on cooperative spectrum leasing, a distributed “win–win” (WW) cooperative framework is designed to encourage the licensed source node (SN) to lease some part of its spectral resources to the unlicensed relay node (RN) for the sake of simultaneously improving the SN’s achievable rate and for reducing the energy consumption (EC). The potential candidate RNs carry out autonomous decisions concerning whether to contend for a cooperative transmission opportunity, which could dissipate some of their battery power, while conveying their traffic in light of their individual service requirements. Furthermore, a WW cooperative medium-access-control (MAC) protocol is designed to implement the proposed distributed WW cooperative framework. Simulation results demonstrate that our WW cooperative MAC protocol is capable of providing both substantial rate improvements and considerable energy savings for the cooperative spectrum leasing system

    STiCMAC: A MAC Protocol for Robust Space-Time Coding in Cooperative Wireless LANs

    Full text link
    Relay-assisted cooperative wireless communication has been shown to have significant performance gains over the legacy direct transmission scheme. Compared with single relay based cooperation schemes, utilizing multiple relays further improves the reliability and rate of transmissions. Distributed space-time coding (DSTC), as one of the schemes to utilize multiple relays, requires tight coordination between relays and does not perform well in a distributed environment with mobility. In this paper, a cooperative medium access control (MAC) layer protocol, called \emph{STiCMAC}, is designed to allow multiple relays to transmit at the same time in an IEEE 802.11 network. The transmission is based on a novel DSTC scheme called \emph{randomized distributed space-time coding} (\emph{R-DSTC}), which requires minimum coordination. Unlike conventional cooperation schemes that pick nodes with good links, \emph{STiCMAC} picks a \emph{transmission mode} that could most improve the end-to-end data rate. Any station that correctly receives from the source can act as a relay and participate in forwarding. The MAC protocol is implemented in a fully decentralized manner and is able to opportunistically recruit relays on the fly, thus making it \emph{robust} to channel variations and user mobility. Simulation results show that the network capacity and delay performance are greatly improved, especially in a mobile environment.Comment: This paper is a revised version of a paper with the same name submitted to IEEE Transaction on Wireless Communications. STiCMAC protocol with RTS/CTS turned off is presented in the appendix of this draf

    Energy efficiency and capacity modeling for cooperative cognitive networks

    Get PDF
    Cooperative relaying has recently appeared as one of the widely recognized features for future wireless communication systems. The great potential of cooperative communication in increasing system capacity and enhancing power efficiency has attracted large efforts over the last few years. In this paper, we propose a Cooperation Loop as a reference model for all algorithms in relay based cooperative wireless networks. Using this model, we discuss cooperative relay based protocols in IEEE 802.11 standards and limits posed to cognitive approaches. We show the potential location area of relay nodes as well as the performance bounds of capacity gain, delay and power efficiency achieved in relay based scenarios for any cooperative cognitive algorithms

    Efficient Retransmission QoS-Aware MAC Scheme in Wireless Sensor Networks

    Get PDF
    In this paper, an Efficient Retransmission Random Access Protocol (ERRAP) is designed that combines scheme of collision avoidance and energy management for low-cost, short-range wireless radios and low-energy sensor nodes applications. This protocol focuses on efficient Media Access Control (MAC) schemes to provide autonomous Quality of Service (QoS) to the sensor nodes in one-hop QoS retransmission group in WSNs where the source nodes do not have receiver circuits. These sensor nodes can only transmit data to a destination node, but cannot receive acknowledgement or control signals from the destination node. The proposed scheme ERRAP provides QoS to the nodes which work independently on predefined time by allowing them to transmit each packet an optimal number of times within a given period. Our simulation results demonstrate the superiority of ERRAP scheme which increases the delivery probability and reduces the energy consumption

    Quantifying Potential Energy Efficiency Gain in Green Cellular Wireless Networks

    Full text link
    Conventional cellular wireless networks were designed with the purpose of providing high throughput for the user and high capacity for the service provider, without any provisions of energy efficiency. As a result, these networks have an enormous Carbon footprint. In this paper, we describe the sources of the inefficiencies in such networks. First we present results of the studies on how much Carbon footprint such networks generate. We also discuss how much more mobile traffic is expected to increase so that this Carbon footprint will even increase tremendously more. We then discuss specific sources of inefficiency and potential sources of improvement at the physical layer as well as at higher layers of the communication protocol hierarchy. In particular, considering that most of the energy inefficiency in cellular wireless networks is at the base stations, we discuss multi-tier networks and point to the potential of exploiting mobility patterns in order to use base station energy judiciously. We then investigate potential methods to reduce this inefficiency and quantify their individual contributions. By a consideration of the combination of all potential gains, we conclude that an improvement in energy consumption in cellular wireless networks by two orders of magnitude, or even more, is possible.Comment: arXiv admin note: text overlap with arXiv:1210.843

    Distributed MAC Protocol Supporting Physical-Layer Network Coding

    Full text link
    Physical-layer network coding (PNC) is a promising approach for wireless networks. It allows nodes to transmit simultaneously. Due to the difficulties of scheduling simultaneous transmissions, existing works on PNC are based on simplified medium access control (MAC) protocols, which are not applicable to general multi-hop wireless networks, to the best of our knowledge. In this paper, we propose a distributed MAC protocol that supports PNC in multi-hop wireless networks. The proposed MAC protocol is based on the carrier sense multiple access (CSMA) strategy and can be regarded as an extension to the IEEE 802.11 MAC protocol. In the proposed protocol, each node collects information on the queue status of its neighboring nodes. When a node finds that there is an opportunity for some of its neighbors to perform PNC, it notifies its corresponding neighboring nodes and initiates the process of packet exchange using PNC, with the node itself as a relay. During the packet exchange process, the relay also works as a coordinator which coordinates the transmission of source nodes. Meanwhile, the proposed protocol is compatible with conventional network coding and conventional transmission schemes. Simulation results show that the proposed protocol is advantageous in various scenarios of wireless applications.Comment: Final versio

    Priority Preemption for Real-time Application QoS Guarantees in Cooperative Vehicular Networks

    Get PDF
    Inter-vehicle and roadside-to-vehicle communications can contribute to a safer and more efficient driving experience by providing time-sensitive and location-aware information. However, its performance suffers from vehicle mobility, intermittent user connectivity, and wireless channel unreliability. In this paper, we propose a novel cross-layer optimization approach based on our Adaptive Distributed Cooperative Medium Access Control (ADC-MAC) protocol to guarantee the quality-of-service (QoS) of real-time applications. Markov chain based theoretical analysis show that our proposed priority preemption approach can improve the quality of a real-time application by guaranteeing its bandwidth and reducing its transmission latency
    • …
    corecore