977 research outputs found

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    Data classification using the Dempster-Shafer method

    Get PDF
    In this paper, the Dempster-Shafer method is employed as the theoretical basis for creating data classification systems. Testing is carried out using three popular (multiple attribute) benchmark datasets that have two, three and four classes. In each case, a subset of the available data is used for training to establish thresholds, limits or likelihoods of class membership for each attribute, and hence create mass functions that establish probability of class membership for each attribute of the test data. Classification of each data item is achieved by combination of these probabilities via Dempster’s Rule of Combination. Results for the first two datasets show extremely high classification accuracy that is competitive with other popular methods. The third dataset is non-numerical and difficult to classify, but good results can be achieved provided the system and mass functions are designed carefully and the right attributes are chosen for combination. In all cases the Dempster-Shafer method provides comparable performance to other more popular algorithms, but the overhead of generating accurate mass functions increases the complexity with the addition of new attributes. Overall, the results suggest that the D-S approach provides a suitable framework for the design of classification systems and that automating the mass function design and calculation would increase the viability of the algorithm for complex classification problems

    Fault Diagnosis of Oil-Immersed Transformers Using Self-Organization Antibody Network and Immune Operator

    Get PDF
    There are some drawbacks when diagnosis techniques based on one intelligent method are applied to identify incipient faults in power transformers. In this paper, a hybrid immune algorithm is proposed to improve the reliability of fault diagnosis. The proposed algorithm is a hybridization of self-organization antibody network (soAbNet) and immune operator. There are two phases in immune operator. One is vaccination, and the other is immune selection. In the process of vaccination, vaccines were obtained from training dataset by using consistency-preserving K-means algorithm (K-means-CP algorithm) and were taken as the initial antibodies for soAbNet. After the soAbNet was trained, immune selection was applied to optimize the memory antibodies in the trained soAbNet. The effectiveness of the proposed algorithm is verified using benchmark classification dataset and real-world transformer fault dataset. For comparison purpose, three transformer diagnosis methods such as the IEC criteria, back propagation neural network (BPNN), and soAbNet are utilized. The experimental results indicate that the proposed approach can extract the dataset characteristics efficiently and the diagnostic accuracy is higher than that obtained with other individual methods

    A survey on artificial intelligence based techniques for diagnosis of hepatitis variants

    Get PDF
    Hepatitis is a dreaded disease that has taken the lives of so many people over the recent past years. The research survey shows that hepatitis viral disease has five major variants referred to as Hepatitis A, B, C, D, and E. Scholars over the years have tried to find an alternative diagnostic means for hepatitis disease using artificial intelligence (AI) techniques in order to save lives. This study extensively reviewed 37 papers on AI based techniques for diagnosing core hepatitis viral disease. Results showed that Hepatitis B (30%) and C (3%) were the only types of hepatitis the AI-based techniques were used to diagnose and properly classified out of the five major types, while (67%) of the paper reviewed diagnosed hepatitis disease based on the different AI based approach but were not classified into any of the five major types. Results from the study also revealed that 18 out of the 37 papers reviewed used hybrid approach, while the remaining 19 used single AI based approach. This shows no significance in terms of technique usage in modeling intelligence into application. This study reveals furthermore a serious gap in knowledge in terms of single hepatitis type prediction or diagnosis in all the papers considered, and recommends that the future road map should be in the aspect of integrating the major hepatitis variants into a single predictive model using effective intelligent machine learning techniques in order to reduce cost of diagnosis and quick treatment of patients
    • …
    corecore