3,689 research outputs found

    Development of lead salt semiconductor lasers for the 9-17 micron spectral region

    Get PDF
    Improved diode lasers of Pb sub 1-x Sn sub x Se operating in the 9-17 micrometers spectral region were developed. The performance characteristics of the best lasers exceeded the contract goals of 500 microW/mode at T 30K in the 9-12 micrometers region and 200 microW/mode at T 18K in the 16-17 micrometers region. Increased reliability and device yields resulted from processing improvements which evolved from a series of diagnostic studies. By means of Auger electron spectroscopy, laser shelf storage degradation was shown to be characterized by the presence of In metal on the semiconductor crystal surfaces. Studies of various metal barrier layers between the crystals and the In metal led to the development of an improved metallurgical contacting technology which has resulted in devices with performance stability values exceeding the contract goal of a one year shelf life. Lasers cycled over 500 times between 300K and 77K were also shown to be stable. Studies on improved methods of fabricating striped geometry lasers indicated that good spectral mode characteristics resulted from lasers which stripe widths of 12 and 25 micrometers

    Dual-side and three-dimensional microelectrode arrays fabricated from ultra-thin silicon substrates

    Get PDF
    A method for fabricating planar implantable microelectrode arrays was demonstrated using a process that relied on ultra-thin silicon substrates, which ranged in thickness from 25 to 50 µm. The challenge of handling these fragile materials was met via a temporary substrate support mechanism. In order to compensate for putative electrical shielding of extracellular neuronal fields, separately addressable electrode arrays were defined on each side of the silicon device. Deep reactive ion etching was employed to create sharp implantable shafts with lengths of up to 5 mm. The devices were flip-chip bonded onto printed circuit boards (PCBs) by means of an anisotropic conductive adhesive film. This scalable assembly technique enabled three-dimensional (3D) integration through formation of stacks of multiple silicon and PCB layers. Simulations and measurements of microelectrode noise appear to suggest that low impedance surfaces, which could be formed by electrodeposition of gold or other materials, are required to ensure an optimal signal-to-noise ratio as well a low level of interchannel crosstalk

    Sensitivity Analysis of Algan/Gan Hemts to Process Variation

    Get PDF
    A sensitivity analysis of AlGaN/GaN HEMT performance on material and process variations was performed. Aluminum mole fraction, barrier thickness, and gate length were varied ± 5% over nominal values to determine how sensitive simulated device performance was to changes in these 3 parameters. Simulated data was generated with the Synopsys TCAD software suite using a physics-based HEMT model. To validate model performance, simulated data was correlated with experimental data, which consisted of wafer epilayer characterization data as well as DC and small-signal RF device performance data from 1-26 GHz. Trends were observed in the experimental data due to variations in the fabrication process. Epilayer data showed cross-wafer trends in sheet resistance, barrier thickness and Al mole fraction but didn’t show any discernable trends in mobility or sheet carrier concentration. Maximum output current was the only measured performance metric that showed a strong trend across the wafers. Data from two different device geometries on the same wafers were compared to determine whether performance variations across a wafer could be attributed to epilayer variation or device geometry. Variation in power and current gain cutoff frequencies was attributed to differences in the device geometry whereas variations in maximum output current was correlated to sheet resistance and barrier thickness variation. Simulated device performance showed varying sensitivities when ± 5% changes in aluminum mole fraction, barrier thickness, and gate length were made. Al mole fraction and barrier thickness had a large effect on DC output up to 40%, while the gate length only moderately effected DC output by 2-3%. However, of all 3 parameters, changes in gate length had the greatest effect on the RF performance (1-3%) while RF performance was negligibly affected by changes in Al mole fraction and barrier thickness. Although varying these three parameters affects device performance, variation in these three parameters alone is insufficient to accurately account for variations in measured device performance

    Linear laser diode arrays for improvement in optical disk recording for space stations

    Get PDF
    The design and fabrication of individually addressable laser diode arrays for high performance magneto-optic recording systems are presented. Ten diode arrays with 30 mW cW light output, linear light vs. current characteristics and single longitudinal mode spectrum were fabricated using channel substrate planar (CSP) structures. Preliminary results on the inverse CSP structure, whose fabrication is less critically dependent on device parameters than the CSP, are also presented. The impact of systems parameters and requirements, in particular, the effect of feedback on laser design is assessed, and techniques to reduce feedback or minimize its effect on systems performance, including mode-stabilized structures, are evaluated

    High Input/output Density Optoelectronic Probe Card For Wafer-level Test Of Electrical And Optical Interconnect Components, Methods Of Fabrication, And Methods Of Use

    Get PDF
    Optoelectronic probe cards, methods of fabrication, and methods of use, are disclosed. Briefly described, one exemplary embodiment includes an optoelectronic probe card adapted to test an electrical quality and an optical quality of an optoelectronic structure under test having electrical and optical components.Georgia Tech Research Corporatio

    Sixty GHz IMPATT diode development

    Get PDF
    The objective of this program is to develop 60 GHz GaAs IMPATT Diodes suitable for communications applications. The performance goal of the 60 GHz IMPATT is 1W CW output power with a conversion efficiency of 15 percent and 10 year life time. During the course of the program, double drift (DD) GaAs IMPATT Diodes have been developed resulting in the state of the art performance at V band frequencies. A CW output power of 1.12 W was demonstrated at 51.9 GHz with 9.7 percent efficiency. The best conversion efficiency achieved was 15.3 percent. V band DD GaAs IMPATTs were developed using both small signal and large signal analyses. GaAs wafers of DD flat, DD hybrid, and DD Read profiles using molecular beam epitaxy (MBE) were developed with excellent doping profile control. Wafer evaluation was routinely made by the capacitance versus voltage (C-V) measurement. Ion mass spectrometry (SIMS) analysis was also used for more detailed profile evaluation

    The Boston University Photonics Center annual report 2013-2014

    Full text link
    This repository item contains an annual report that summarizes activities of the Boston University Photonics Center in the 2013-2014 academic year. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This annual report summarizes activities of the Boston University Photonics Center in the 2013–2014 academic year.This has been a good year for the Photonics Center. In the following pages, you will see that the center’s faculty received prodigious honors and awards, generated more than 100 notable scholarly publications in the leading journals in our field, and attracted 14.5Minnewresearchgrantsandcontractsthisyear.Facultyandstaffalsoexpandedtheireffortsineducationandtraining,throughNationalScienceFoundation–sponsoredsitesforResearchExperiencesforUndergraduatesandforTeachers.Asacommunity,wehostedacompellingseriesofdistinguishedinvitedspeakers,andemphasizedthethemeofInnovationsattheIntersectionsofMicro/NanofabricationTechnology,Biology,andBiomedicineatourannualFutureofLightSymposium.Wetookaleadershiproleinrunningnationalworkshopsonemergingphotonicfields,includinganOSAIncubatoronControlledLightPropagationthroughComplexMedia,andanNSFWorkshoponNoninvasiveImagingofBrainFunction.HighlightsofourresearchachievementsfortheyearincludeadistinctivePresidentialEarlyCareerAwardforScientistsandEngineers(PECASE)forAssistantProfessorXueHan,anambitiousnewDoD−sponsoredgrantforMulti−ScaleMulti−DisciplinaryModelingofElectronicMaterialsledbyProfessorEnricoBellotti,launchofourNIH−sponsoredCenterforInnovationinPointofCareTechnologiesfortheFutureofCancerCareledbyProfessorCathyKlapperich,andsuccessfulcompletionoftheambitiousIARPA−fundedcontractforNextGenerationSolidImmersionMicroscopyforFaultIsolationinBack−SideCircuitAnalysisledbyProfessorBennettGoldberg.Thesethreeprograms,whichrepresentmorethan14.5M in new research grants and contracts this year. Faculty and staff also expanded their efforts in education and training, through National Science Foundation–sponsored sites for Research Experiences for Undergraduates and for Teachers. As a community, we hosted a compelling series of distinguished invited speakers, and emphasized the theme of Innovations at the Intersections of Micro/Nanofabrication Technology, Biology, and Biomedicine at our annual Future of Light Symposium. We took a leadership role in running national workshops on emerging photonic fields, including an OSA Incubator on Controlled Light Propagation through Complex Media, and an NSF Workshop on Noninvasive Imaging of Brain Function. Highlights of our research achievements for the year include a distinctive Presidential Early Career Award for Scientists and Engineers (PECASE) for Assistant Professor Xue Han, an ambitious new DoD-sponsored grant for Multi-Scale Multi-Disciplinary Modeling of Electronic Materials led by Professor Enrico Bellotti, launch of our NIH-sponsored Center for Innovation in Point of Care Technologies for the Future of Cancer Care led by Professor Cathy Klapperich, and successful completion of the ambitious IARPA-funded contract for Next Generation Solid Immersion Microscopy for Fault Isolation in Back-Side Circuit Analysis led by Professor Bennett Goldberg. These three programs, which represent more than 20M in research funding for the University, are indicative of the breadth of Photonics Center research interests: from fundamental modeling of optoelectronic materials to practical development of cancer diagnostics, from exciting new discoveries in optogenetics for understanding brain function to the achievement of world-record resolution in semiconductor circuit microscopy. Our community welcomed an auspicious cohort of new faculty members, including a newly hired assistant professor and a newly hired professor (and Chair of the Mechanical Engineering Department). The Industry/University Cooperative Research Center—the centerpiece of our translational biophotonics program—continues to focus on advancing the health care and medical device industries, and has entered its fourth year of operation with a strong record of achievement and with the support of an enthusiastic industrial membership base
    • …
    corecore