25,167 research outputs found

    Power Control in Parallel Symmetric α-Stable Noise Channels

    Get PDF
    International audienceParallel channels form a basic building block for communication systems, including those based on OFDM and CDMA. While parallel Gaussian noise channels have been widely studied, parallel impulsive noise channels have received significantly less attention despite their importance in a range of modern communication systems. In this paper, this problem is addressed and a power allocation strategy is developed for parallel symmetric α-stable noise channels-a key class of impulsive noise channels. We show that our strategy can improve achievable rates by up to a factor of 1.5 over the standard waterfilling algorithm that assumes the noise is Gaussian

    Stabilization of Linear Systems Over Gaussian Networks

    Full text link
    The problem of remotely stabilizing a noisy linear time invariant plant over a Gaussian relay network is addressed. The network is comprised of a sensor node, a group of relay nodes and a remote controller. The sensor and the relay nodes operate subject to an average transmit power constraint and they can cooperate to communicate the observations of the plant's state to the remote controller. The communication links between all nodes are modeled as Gaussian channels. Necessary as well as sufficient conditions for mean-square stabilization over various network topologies are derived. The sufficient conditions are in general obtained using delay-free linear policies and the necessary conditions are obtained using information theoretic tools. Different settings where linear policies are optimal, asymptotically optimal (in certain parameters of the system) and suboptimal have been identified. For the case with noisy multi-dimensional sources controlled over scalar channels, it is shown that linear time varying policies lead to minimum capacity requirements, meeting the fundamental lower bound. For the case with noiseless sources and parallel channels, non-linear policies which meet the lower bound have been identified

    Communicating over Filter-and-Forward Relay Networks with Channel Output Feedback

    Full text link
    Relay networks aid in increasing the rate of communication from source to destination. However, the capacity of even a three-terminal relay channel is an open problem. In this work, we propose a new lower bound for the capacity of the three-terminal relay channel with destination-to-source feedback in the presence of correlated noise. Our lower bound improves on the existing bounds in the literature. We then extend our lower bound to general relay network configurations using an arbitrary number of filter-and-forward relay nodes. Such network configurations are common in many multi-hop communication systems where the intermediate nodes can only perform minimal processing due to limited computational power. Simulation results show that significant improvements in the achievable rate can be obtained through our approach. We next derive a coding strategy (optimized using post processed signal-to-noise ratio as a criterion) for the three-terminal relay channel with noisy channel output feedback for two transmissions. This coding scheme can be used in conjunction with open-loop codes for applications like automatic repeat request (ARQ) or hybrid-ARQ.Comment: 15 pages, 8 figures, to appear in IEEE Transactions on Signal Processin

    Distributed Decision Through Self-Synchronizing Sensor Networks in the Presence of Propagation Delays and Asymmetric Channels

    Full text link
    In this paper we propose and analyze a distributed algorithm for achieving globally optimal decisions, either estimation or detection, through a self-synchronization mechanism among linearly coupled integrators initialized with local measurements. We model the interaction among the nodes as a directed graph with weights (possibly) dependent on the radio channels and we pose special attention to the effect of the propagation delay occurring in the exchange of data among sensors, as a function of the network geometry. We derive necessary and sufficient conditions for the proposed system to reach a consensus on globally optimal decision statistics. One of the major results proved in this work is that a consensus is reached with exponential convergence speed for any bounded delay condition if and only if the directed graph is quasi-strongly connected. We provide a closed form expression for the global consensus, showing that the effect of delays is, in general, the introduction of a bias in the final decision. Finally, we exploit our closed form expression to devise a double-step consensus mechanism able to provide an unbiased estimate with minimum extra complexity, without the need to know or estimate the channel parameters.Comment: To be published on IEEE Transactions on Signal Processin

    Parity solitons in nonresonantly driven-dissipative condensate channels

    Full text link
    We study analytically and numerically the condensation of a driven-dissipative exciton-polariton system using symmetric nonresonant pumping geometries. We show that the lowest condensation threshold solution carries a definite parity as a consequence of the symmetric excitation profile. At higher pump intensities competition between the two parities can result in critical quenching of one and saturation of the other. Using long pump channels, we show that the competition of the condensate parities gives rise to a different type of topologically stable defect propagating indefinitely along the condensate. The defects display repulsive interactions and are characterized by a sustained wavepacket carrying a pair of opposite parity domain walls in the condensate channel

    A Multi-cell MMSE Precoder for Massive MIMO Systems and New Large System Analysis

    Full text link
    In this paper, a new multi-cell MMSE precoder is proposed for massive MIMO systems. We consider a multi-cell network where each cell has KK users and BB orthogonal pilot sequences are available, with B=βKB = \beta K and β≥1\beta \ge 1 being the pilot reuse factor over the network. In comparison with conventional single-cell precoding which only uses the KK intra-cell channel estimates, the proposed multi-cell MMSE precoder utilizes all BB channel directions that can be estimated locally at a base station, so that the transmission is designed spatially to suppress both parts of the inter-cell and intra-cell interference. To evaluate the performance, a large-scale approximation of the downlink SINR for the proposed multi-cell MMSE precoder is derived and the approximation is tight in the large-system limit. Power control for the pilot and payload, imperfect channel estimation and arbitrary pilot allocation are accounted for in our precoder. Numerical results show that the proposed multi-cell MMSE precoder achieves a significant sum spectral efficiency gain over the classical single-cell MMSE precoder and the gain increases as KK or β\beta grows. Compared with the recent M-ZF precoder, whose performance degrades drastically for a large KK, our M-MMSE can always guarantee a high and stable performance. Moreover, the large-scale approximation is easy to compute and shown to be accurate even for small system dimensions.Comment: 6 pages, 4 figures, accepted by Globecom 2015. arXiv admin note: text overlap with arXiv:1509.0175
    • …
    corecore