976 research outputs found

    Timely and reliable packets delivery over Internet of Vehicles (IoVs) for road accidents prevention: a cross-layer approach

    Get PDF
    With the envisioned era of Internet of Things (IoTs), all aspects of Intelligent Transportation Systems (ITS) will be connected to improve transport safety, relieve traffic congestion, reduce air pollution, enhance the comfort of transportation and significantly reduce road accidents. In IoVs, regular exchange of current position, direction, velocity, etc., enables mobile vehicles to predict an upcoming accident and alert the human drivers in time or proactively take precautionary actions to avoid the accident. The actualization of this concept requires the use of channel access protocols that can guarantee reliable and timely broadcast of safety messages. This paper investigates the application of network coding concept to increase content of every transmission and achieve improved broadcast reliability with less number of retransmission. In particular, we proposed Code Aided Retransmission-based Error Recovery (CARER) scheme, introduced an RTB/CTB handshake to overcome hidden node problem and reduce packets collision rate. In order to avoid broadcast storm problem associated with the use of RTB/CTB packet in a broadcast transmission, we developed a rebroadcasting metric used to successfully select a vehicle to rebroadcast the encoded message. The performance of CARER protocol is clearly shown with detailed theoretical analysis and further validated with simulation experiments

    Achieving reliable and enhanced communication in vehicular ad hoc networks (VANETs)

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial fulfilment of the requirement for the degree of Doctor of PhilosophyWith the envisioned age of Internet of Things (IoTs), different aspects of Intelligent Transportation System (ITS) will be linked so as to advance road transportation safety, ease congestion of road traffic, lessen air pollution, improve passenger transportation comfort and significantly reduce road accidents. In vehicular networks, regular exchange of current position, direction, speed, etc., enable mobile vehicle to foresee an imminent vehicle accident and notify the driver early enough in order to take appropriate action(s) or the vehicle on its own may take adequate preventive measures to avert the looming accident. Actualizing this concept requires use of shared media access protocol that is capable of guaranteeing reliable and timely broadcast of safety messages. This dissertation investigates the use of Network Coding (NC) techniques to enrich the content of each transmission and ensure improved high reliability of the broadcasted safety messages with less number of retransmissions. A Code Aided Retransmission-based Error Recovery (CARER) protocol is proposed. In order to avoid broadcast storm problem, a rebroadcasting vehicle selection metric η, is developed, which is used to select a vehicle that will rebroadcast the received encoded message. Although the proposed CARER protocol demonstrates an impressive performance, the level of incurred overhead is fairly high due to the use of complex rebroadcasting vehicle selection metric. To resolve this issue, a Random Network Coding (RNC) and vehicle clustering based vehicular communication scheme with low algorithmic complexity, named Reliable and Enhanced Cooperative Cross-layer MAC (RECMAC) scheme, is proposed. The use of this clustering technique enables RECMAC to subdivide the vehicular network into small manageable, coordinated clusters which further improve transmission reliability and minimise negative impact of network overhead. Similarly, a Cluster Head (CH) selection metric ℱ(\u1d457) is designed, which is used to determine and select the most suitably qualified candidate to become the CH of a particular cluster. Finally, in order to investigate the impact of available radio spectral resource, an in-depth study of the required amount of spectrum sufficient to support high transmission reliability and minimum latency requirements of critical road safety messages in vehicular networks was carried out. The performance of the proposed schemes was clearly shown with detailed theoretical analysis and was further validated with simulation experiments

    A survey of performance enhancement of transmission control protocol (TCP) in wireless ad hoc networks

    Get PDF
    This Article is provided by the Brunel Open Access Publishing Fund - Copyright @ 2011 Springer OpenTransmission control protocol (TCP), which provides reliable end-to-end data delivery, performs well in traditional wired network environments, while in wireless ad hoc networks, it does not perform well. Compared to wired networks, wireless ad hoc networks have some specific characteristics such as node mobility and a shared medium. Owing to these specific characteristics of wireless ad hoc networks, TCP faces particular problems with, for example, route failure, channel contention and high bit error rates. These factors are responsible for the performance degradation of TCP in wireless ad hoc networks. The research community has produced a wide range of proposals to improve the performance of TCP in wireless ad hoc networks. This article presents a survey of these proposals (approaches). A classification of TCP improvement proposals for wireless ad hoc networks is presented, which makes it easy to compare the proposals falling under the same category. Tables which summarize the approaches for quick overview are provided. Possible directions for further improvements in this area are suggested in the conclusions. The aim of the article is to enable the reader to quickly acquire an overview of the state of TCP in wireless ad hoc networks.This study is partly funded by Kohat University of Science & Technology (KUST), Pakistan, and the Higher Education Commission, Pakistan

    Hybrid probabilistic broadcast schemes for mobile ad hoc networks

    Get PDF
    Broadcasting is one of the fundamental data dissemination mechanisms in mobile ad hoc network (MANET), which is, for instance, extensively used in many routing protocols for route discovery process. The dynamic topology and limited communication bandwidth of such networks pose a number of challenges in designing an efficient broadcasting scheme for MANETs. The simplest approach is flooding, where each node retransmit every unique received packet exactly once on each outgoing link. Although flooding ensures that broadcast packet is received by all network nodes, it generates many redundant transmissions which can trigger high transmission collision and contention in the network, a phenomenon referred to as the broadcast storm. Several probabilistic broadcast algorithms have been proposed that incur low communication overhead to mitigate the broadcast storm problem and tend to show superior adaptability in changing environments when compared to deterministic (i.e., non-probabilistic) schemes. However, most of these schemes reduce redundant broadcasts at the expense of reachability, a requirement for near-global network topological information or support from additional hardware. This research argues that broadcast schemes that combine the important features of fixed probabilistic and counter-based schemes can reduce the broadcast storm problem without sacrificing reachability while still achieving better end-to-end delay. To this end, the first part of this research investigate the effects of forwarding probabilities and counter threshold values on the performance of fixed probabilistic and counter-based schemes. The findings of this investigation are exploited to suggest a new hybrid approach, the Probabilistic Counter-Based Scheme (PCBS) that uses the number of duplicate packets received to estimate neighbourhood density and assign a forwarding probability value to restrict the generation of so many redundant broadcast packets. The simulation results reveal that under various network conditions PCBS reduces the number of redundant transmissions, collision rate and end-to-end delay significantly without sacrificing reachability when compared against counter-based, fixed probabilistic and flood broadcasting. Often in MANETs, there are regions of different node density due to node mobility. As such, PCBS can suffer from a degree of inflexibility in terms of rebroadcast probability, since each node is assigned the same forwarding probability regardless of its local neighbourhood conditions. To address this shortcoming, the second part of this dissertation proposes an Adjusted Probabilistic Counter-Based Scheme (APCBS) that dynamically assigns the forwarding probability to a node based on its local node density using a mathematical function. Thus, a node located in a sparse region of the network is assigned a high forwarding probability while a node located in denser region is assigned a relatively lower forwarding probability. These combined effects enhance end-to-end delay, collision rate and reachability compared to PCBS variant. The performance of most broadcasting schemes that have been suggested for MANETs including those presented here, have been analysed in the context of “pure” broadcast scenarios with relatively little investigation towards their performance impact on specific applications such as route discovery process. The final part of this thesis evaluates the performance of the well-known AODV routing protocol when augmented with APCBS route discovery. Results indicate that the resulting route discovery approach reduces the routing overhead, collision rate and end-to-end delay without degrading the overall network throughput compared to the existing approaches based on flooding, counterbased and fixed probabilistic route discovery

    Performance and energy efficiency in wireless self-organized networks

    Get PDF
    fi=vertaisarvioitu|en=peerReviewed
    corecore