795 research outputs found

    Channel Allocation in An Overlaid Mesh Network

    Get PDF
    In spite of recent advancement of Wireless Mesh Technology, a lot of research challenges remained to be solved to extract the full capacity of this modern technology. As 802.11a/b/g standards make available the use of multi radio multi channel in a wireless node, a lot of research activities are going on to efficiently allocate the channel of a Mesh Network to boost its overall performances. In this research, the prospect of dividing the total network area into two non-overlapping channels of a given Mesh Network is investigated and analyzed numerically. It is found that the throughput is doubled as well as the fairness improves considerably if we deploy two channels instead of single channel backbone. An extensive simulation study has been carried out to find the optimum coverage area between two channels. The study shows that at a particular point of allocation, the network gives the optimum response.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    A design of variable transmission power control for wireless ad-hoc network

    Get PDF
    Includes bibliography.Wireless Ad-hoc Network has emanated to be a promising network paradigm that can handle last mile technology due to unprecedented growth of internet users. This network is promising because it extends network to remote areas such as congested environments, rural environments etc. It is known that nodes involved in Wireless Ad-hoc Network rely on battery energy as their source of power. Energy consumption has become one of the major challenges experienced in Wireless Ad-hoc Network, which must be properly tackled. This could be traced to the effect of transmission power on the nodes in the network. Transmission power largely determines the amount of energy consumed by each node in the network. Therefore, a power control technique must be adopted in order to manage and select the optimal transmission power with respect to distance. This transmission power must be sufficient to transfer information from one node to another. Literature have proposed different algorithms for power control technique in Wireless Ad-hoc Network. Some researchers looked at the power control technique in terms of minimising energy consumed from different perspectives, which include power aware routing and power control topology management. However, most of these algorithms were applied at different layers in OSI model such as physical layer, data link layer, network layer and application layer. To achieve a reduced energy consumption at each node in the network, a novel algorithm for transmission power control was designed to select optimal transmission power. The proposed algorithm was designed in such a way that it selects transmission power based on the distance between the nodes without affecting the network throughput. Graph theory is used in this research to model the network topology, and transmission power with respect to the distance

    An energy-aware and QOS assured wireless multi-hop transmission protocol

    Get PDF
    A thesis submitted in fulfillment of the requirements for the degree of Master of Science by researchThe Ad-hoc network is set up with multiple wireless devices without any pre-existing infrastructure. It usually supports best-effort traffic and occasionally some kinds of Quality of Service (QoS). However, there are some applications with real-time traffic requirements where deadlines must be met. To meet deadlines, the communication network has to support the timely delivery of inter-task messages. Furthermore, energy efficiency is a critical issue for battery-powered mobile devices in ad-hoc networks. Thus, A QoS guaranteed and energy-aware transmission scheme is one hot of research topics in the research area. The MSc research work is based on the idea of Real-Time Wireless Multi-hop Protocol (RT-WMP). RT-WMP is a well known protocol originally used in the robots control area. It allows wireless real-time traffic in relatively small mobile ad-hoc networks using the low-cost commercial IEEE 802.11 technology. The proposed scheme is based on a token-passing approach and message exchange is priority based. The idea of energy-aware routing mechanism is based on the AODV protocol. This energy-saving mechanism is analysed and simulated in our study as an extension of the RT-WMP. From the simulation results and analysis, it has been shown that adding energy-aware mechanism to RT-WMP is meaningful to optimise the performance of traffic on the network

    Maximizing multicast call acceptance rate in multi-channel multi-interface wireless mesh networks

    Get PDF
    In this paper, we consider the problem of constructing bandwidth-guaranteed multicast tree in multi-channel multi-interface wireless mesh networks. We focus on the scenario of dynamic multicast call arrival, where each call has a specific bandwidth requirement. A call is accepted if a multicast tree with sufficient bandwidth on each link can be constructed. Intuitively, if the carried load on both the most-heavily loaded channel and the most-heavily loaded node is minimized, the traffic load in the network will be balanced. If the network load is balanced, more room will be available for accommodating future calls. This would maximize the call acceptance rate in the network. With the above notion of load balancing in mind, an Integer Linear Programming (ILP) formulation is formulated for constructing bandwidth-guaranteed tree. We show that the above problem is NP-hard, and an efficient heuristic algorithm called Largest Coverage Shortest-Path First (LC-SPF) is devised. Simulation results show that LC-SPF yields comparable call acceptance rate as the ILP formulation, but with much shorter running time. © 2010 IEEE.published_or_final_versio

    Optimizing Transmission and Shutdown for Energy-Efficient Real-Time Packet Scheduling in Clustered Ad Hoc Networks

    Get PDF
    Energy efficiency is imperative to enable the deployment of ad hoc networks. Conventional power management focuses independently on the physical orMAC layer and approaches differ depending on the abstraction level. At the physical layer, the fundamental tradeoff between transmission rate and energy is exploited, which leads to transmit as slow as possible. At MAC level, power reduction techniques aim to transmit as fast as possible to maximize the radios power-off interval. The two approaches seem conflicting and it is not obvious which one is the most appropriate.We propose a transmission strategy that optimally mixes both techniques in a multiuser context.We present a cross-layer solution considering the transceiver power characteristics, the varying system load, and the dynamic channel constraints. Based on this, we derive a low-complexity online scheduling algorithm. Results considering an M-ary quadrature amplitude modulation radio show that for a range of scenarios a large power reduction is achieved, compared to the case where only scaling or shutdown is considered
    • …
    corecore