36,917 research outputs found

    Cooperative Communications in Smart Grid Networks

    Get PDF
    The conventional grid system is facing great challenges due to the fast growing electricity demand throughout the world. The smart grid has emerged as the next generation of grid power systems, aimed at providing secure, reliable and low cost power generation, distribution and consumption intelligently. The smart grid communication system within the smart grid network is of fundamental importance to support data transfer and information exchange within the smart grid system. The National Institute of Standards and Technology has identified wireless communications as an important networking technology to be employed in power systems. The reliability of the data transmission is essential for the smart grid system to achieve high accuracy for the power generation, distribution and consumption. In this thesis, we investigate cooperative communications to improve transmission reliability in smart grid networks. Although many issues within cooperative communication have already been addressed, there is a lack of research efforts on cooperative communication for the wireless smart grid communication system which has its own network features and different transmission requirements. In our research, the smart grid communication networks were studied, and cooperative communications in smart grid networks were analysed. The research work mainly focuses on three problems: the application of cooperative relay communications to modern smart grid communication networks, the cooperative relay-based network development strategy, and the optimization of cooperative relay communication for smart grids. For the first problem, the application of cooperative relay communication to a home area network (HAN) of smart grid system is presented. The wireless transmission reliability is identified as the issue of most concern in wireless smart grid networks. We model the smart grid HAN as a wireless mesh network that deploys cooperative relay communication to enhance the transmission reliability. We apply cooperative relay communication to provide a user equipment selection scheme to effectively improve the transmission quality between the electricity equipment and the smart meter. For the second problem, we address the network design and planning problem in the smart grid HAN. The outage performance of direct transmission and cooperative transmission was analysed. Based on the reliability performance metric that we have defined, we propose a HAN deployment strategy to improve the reliability of the transmission links. The proposed HAN deployment strategy is tested in a home environment. The smart meter location optimization problem has also been identified and solved. The simulation results show that our proposed network deployment strategy can guarantee high reliability for smart grid communications in home area networks. For the third problem, the research focuses on the optimization of the cooperative relay transmission regarding the power allocation and relay selection in the neighbourhood area network (NAN) of the smart grid system. Owing to the complexity of the joint optimization problem, reduced-complexity algorithms have been proposed to minimize the transmission power, at the same time, guarantee the link reliability of the cooperative communications. The optimization problem of power allocation and relay selection is formulated and treated as a combinatorial optimization problem. Two sub-optimal solutions that simplify the optimization process are devised. Based on the solutions, two different algorithms are proposed to solve the optimization problem with reduced complexity. The simulation results demonstrate that both two algorithms have good performance on minimizing the total transmission power while guaranteeing the transmission reliability for the wireless smart grid communication system. In this thesis, we consider cooperative communications in a smart grid scenario. We minimize the outage probability and thus improve the reliability of the communications taking place in the smart grid by considering the optimization problem of power control, relay selection and the network deployment problem. Although similar problems might have been well investigated in conventional wireless networks, such as the cellular network, little research has been conducted in smart grid communications. We apply new optimization techniques and propose solutions for these optimization problems specifically tailored for smart grid communications. We demonstrate that, compared to naively applying the algorithms suitable for conventional communications to the smart gird scenario, our proposed algorithm significantly improves the performance of smart grid communications. Finally, we note that, in future work, it will be possible to consider more complex smart grid communications system models. For example, it is worthwhile considering hetregeneous smart communications by combining HAN and wide area networks (WAN). In addition, instead of assuming that all communications have the equal priority, as in this thesis, more comprehensive analysis of the priority of the smart grid communication can be applied to the research

    Energy and throughput efficient strategies for heterogeneous future communication networks

    Get PDF
    As a result of the proliferation of wireless-enabled user equipment and data-hungry applications, mobile data traffic has exponentially increased in recent years.This in-crease has not only forced mobile networks to compete on the scarce wireless spectrum but also to intensify their power consumption to serve an ever-increasing number of user devices. The Heterogeneous Network (HetNet) concept, where mixed types of low-power base stations coexist with large macro base stations, has emerged as a potential solution to address power consumption and spectrum scarcity challenges. However, as a consequence of their inflexible, constrained, and hardware-based configurations, HetNets have major limitations in adapting to fluctuating traffic patterns. Moreover, for large mobile networks, the number of low-power base stations (BSs) may increase dramatically leading to sever power consumption. This can easily overwhelm the benefits of the HetNet concept. This thesis exploits the adaptive nature of Software-defined Radio (SDR) technology to design novel and optimal communication strategies. These strategies have been designed to leverage the spectrum-based cell zooming technique, the long-term evolution licensed assisted access (LTE-LAA) concept, and green energy, in order to introduce a novel communication framework that endeavors to minimize overall network on-grid power consumption and to maximize aggregated throughput, which brings significant benefits for both network operators and their customers. The proposed strategies take into consideration user data demands, BS loads, BS power consumption, and available spectrum to model the research questions as optimization problems. In addition, this thesis leverages the opportunistic nature of the cognitive radio (CR) technique and the adaptive nature of the SDR to introduce a CR-based communication strategy. This proposed CR-based strategy alleviates the power consumption of the CR technique and enhances its security measures according to the confidentiality level of the data being sent. Furthermore, the introduced strategy takes into account user-related factors, such as user battery levels and user data types, and network-related factors, such as the number of unutilized bands and vulnerability level, and then models the research question as a constrained optimization problem. Considering the time complexity of the optimum solutions for the above-mentioned strategies, heuristic solutions were proposed and examined against existing solutions. The obtained results show that the proposed strategies can save energy consumption up to 18%, increase user throughput up to 23%, and achieve better spectrum utilization. Therefore, the proposed strategies offer substantial benefits for both network operators and users

    Energy distribution control in wireless sensor networks through range optimization

    Get PDF
    A major objective in wireless sensor networks is to find optimum routing strategies for energy efficient use of nodes. Routing decision and transmission power selection are intrinsically connected since the transmission power of a node is adjusted depending on the location of the next hop. In this paper, we propose a location-based routing framework to control the energy distribution in a network where transmission ranges, hence powers, of nodes are determined based on their locations. We show that the proposed framework is sufficiently general to investigate the minimum-energy and maximum-lifetime routing problems. It is shown that via the location based strategy the network lifetime can be improved by 70% and the total energy consumption can be decreased to three-fourths to one-third of the constant transmission range strategy depending on the propagation medium and the size of the network

    Edge-Caching Wireless Networks: Performance Analysis and Optimization

    Get PDF
    Edge-caching has received much attention as an efficient technique to reduce delivery latency and network congestion during peak-traffic times by bringing data closer to end users. Existing works usually design caching algorithms separately from physical layer design. In this paper, we analyse edge-caching wireless networks by taking into account the caching capability when designing the signal transmission. Particularly, we investigate multi-layer caching where both base station (BS) and users are capable of storing content data in their local cache and analyse the performance of edge-caching wireless networks under two notable uncoded and coded caching strategies. Firstly, we propose a coded caching strategy that is applied to arbitrary values of cache size. The required backhaul and access rates are derived as a function of the BS and user cache size. Secondly, closed-form expressions for the system energy efficiency (EE) corresponding to the two caching methods are derived. Based on the derived formulas, the system EE is maximized via precoding vectors design and optimization while satisfying a predefined user request rate. Thirdly, two optimization problems are proposed to minimize the content delivery time for the two caching strategies. Finally, numerical results are presented to verify the effectiveness of the two caching methods.Comment: to appear in IEEE Trans. Wireless Commu

    Proportional fairness in wireless powered CSMA/CA based IoT networks

    Get PDF
    This paper considers the deployment of a hybrid wireless data/power access point in an 802.11-based wireless powered IoT network. The proportionally fair allocation of throughputs across IoT nodes is considered under the constraints of energy neutrality and CPU capability for each device. The joint optimization of wireless powering and data communication resources takes the CSMA/CA random channel access features, e.g. the backoff procedure, collisions, protocol overhead into account. Numerical results show that the optimized solution can effectively balance individual throughput across nodes, and meanwhile proportionally maximize the overall sum throughput under energy constraints.Comment: Accepted by Globecom 201
    • …
    corecore