8,932 research outputs found

    Extending OmpSs for OpenCL kernel co-execution in heterogeneous systems

    Get PDF
    © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Heterogeneous systems have a very high potential performance but present difficulties in their programming. OmpSs is a well known framework for task based parallel applications, which is an interesting tool to simplify the programming of these systems. However, it does not support the co-execution of a single OpenCL kernel instance on several compute devices. To overcome this limitation, this paper presents an extension of the OmpSs framework that solves two main objectives: the automatic division of datasets among several devices and the management of their memory address spaces. To adapt to different kinds of applications, the data division can be performed by the novel HGuided load balancing algorithm or by the well known Static and Dynamic. All this is accomplished with negligible impact on the programming. Experimental results reveal that there is always one load balancing algorithm that improves the performance and energy consumption of the system.This work has been supported by the University of Cantabria with grant CVE-2014-18166, the Generalitat de Catalunya under grant 2014-SGR-1051, the Spanish Ministry of Economy, Industry and Competitiveness under contracts TIN2016- 76635-C2-2-R (AEI/FEDER, UE) and TIN2015-65316-P. The Spanish Government through the Programa Severo Ochoa (SEV-2015-0493). The European Research Council under grant agreement No 321253 European Community’s Seventh Framework Programme [FP7/2007-2013] and Horizon 2020 under the Mont-Blanc Projects, grant agreement n 288777, 610402 and 671697 and the European HiPEAC Network.Peer ReviewedPostprint (published version

    A Multi-GPU Programming Library for Real-Time Applications

    Full text link
    We present MGPU, a C++ programming library targeted at single-node multi-GPU systems. Such systems combine disproportionate floating point performance with high data locality and are thus well suited to implement real-time algorithms. We describe the library design, programming interface and implementation details in light of this specific problem domain. The core concepts of this work are a novel kind of container abstraction and MPI-like communication methods for intra-system communication. We further demonstrate how MGPU is used as a framework for porting existing GPU libraries to multi-device architectures. Putting our library to the test, we accelerate an iterative non-linear image reconstruction algorithm for real-time magnetic resonance imaging using multiple GPUs. We achieve a speed-up of about 1.7 using 2 GPUs and reach a final speed-up of 2.1 with 4 GPUs. These promising results lead us to conclude that multi-GPU systems are a viable solution for real-time MRI reconstruction as well as signal-processing applications in general.Comment: 15 pages, 10 figure
    • …
    corecore