2,918 research outputs found

    Delay Constrained Scheduling over Fading Channels: Optimal Policies for Monomial Energy-Cost Functions

    Full text link
    A point-to-point discrete-time scheduling problem of transmitting BB information bits within TT hard delay deadline slots is considered assuming that the underlying energy-bit cost function is a convex monomial. The scheduling objective is to minimize the expected energy expenditure while satisfying the deadline constraint based on information about the unserved bits, channel state/statistics, and the remaining time slots to the deadline. At each time slot, the scheduling decision is made without knowledge of future channel state, and thus there is a tension between serving many bits when the current channel is good versus leaving too many bits for the deadline. Under the assumption that no other packet is scheduled concurrently and no outage is allowed, we derive the optimal scheduling policy. Furthermore, we also investigate the dual problem of maximizing the number of transmitted bits over TT time slots when subject to an energy constraint.Comment: submitted to the IEEE ICC 200

    Delay-Optimal Buffer-Aware Probabilistic Scheduling with Adaptive Transmission

    Full text link
    Cross-layer scheduling is a promising way to improve Quality of Service (QoS) given a power constraint. In this paper, we investigate the system with random data arrival and adaptive transmission. Probabilistic scheduling strategies aware of the buffer state are applied to generalize conventional deterministic scheduling. Based on this, the average delay and power consumption are analysed by Markov reward process. The optimal delay-power tradeoff curve is the Pareto frontier of the feasible delay-power region. It is proved that the optimal delay-power tradeoff is piecewise-linear, whose vertices are obtained by deterministic strategies. Moreover, the corresponding strategies of the optimal tradeoff curve are threshold-based, hence can be obtained by a proposed effective algorithm. On the other hand, we formulate a linear programming to minimize the average delay given a fixed power constraint. By varying the power constraint, the optimal delay-power tradeoff curve can also be obtained. It is demonstrated that the algorithm result and the optimization result match each other, and are further validated by Monte-Carlo simulation.Comment: 6 pages, 4 figures, accepted by IEEE ICCC 201
    • …
    corecore