59 research outputs found

    Secrecy performance of TAS/SC-based multi-hop harvest-to-transmit cognitive WSNs under joint constraint of interference and hardware imperfection

    Get PDF
    In this paper, we evaluate the secrecy performance of multi-hop cognitive wireless sensor networks (WSNs). In the secondary network, a source transmits its data to a destination via the multi-hop relaying model using the transmit antenna selection (TAS)/selection combining (SC) technique at each hop, in the presence of an eavesdropper who wants to receive the data illegally. The secondary transmitters, including the source and intermediate relays, have to harvest energy from radio-frequency signals of a power beacon for transmitting the source data. Moreover, their transmit power must be adjusted to satisfy the quality of service (QoS) of the primary network. Under the joint impact of hardware imperfection and interference constraint, expressions for the transmit power for the secondary transmitters are derived. We also derive exact and asymptotic expressions of secrecy outage probability (SOP) and probability of non-zero secrecy capacity (PNSC) for the proposed protocol over Rayleigh fading channel. The derivations are then verified by Monte Carlo simulations.Web of Science195art. no. 116

    Visible Light Communication Cyber Security Vulnerabilities For Indoor And Outdoor Vehicle-To-Vehicle Communication

    Get PDF
    Light fidelity (Li-Fi), developed from the approach of Visible Light Communication (VLC), is a great replacement or complement to existing radio frequency-based (RF) networks. Li-Fi is expected to be deployed in various environments were, due to Wi-Fi congestion and health limitations, RF should not be used. Moreover, VLC can provide the future fifth generation (5G) wireless technology with higher data rates for device connectivity which will alleviate the traffic demand. 5G is playing a vital role in encouraging the modern applications. In 2023, the deployment of all the cellular networks will reach more than 5 billion users globally. As a result, the security and privacy of 5G wireless networks is an essential problem as those modern applications are in people\u27s life everywhere. VLC security is as one of the core physical-layer security (PLS) solutions for 5G networks. Due to the fact that light does not penetrate through solid objects or walls, VLC naturally has higher security and privacy for indoor wireless networks compared to RF networks. However, the broadcasting nature of VLC caused concerns, e.g., eavesdropping, have created serious attention as it is a crucial step to validate the success of VLC in wild. The aim of this thesis is to properly address the security issues of VLC and further enhance the VLC nature security. We analyzed the secrecy performance of a VLC model by studying the characteristics of the transmitter, receiver and the visible light channel. Moreover, we mitigated the security threats in the VLC model for the legitimate user, by 1) implementing more access points (APs) in a multiuser VLC network that are cooperated, 2) reducing the semi-angle of LED to help improve the directivity and secrecy and, 3) using the protected zone strategy around the AP where eavesdroppers are restricted. According to the model\u27s parameters, the results showed that the secrecy performance in the proposed indoor VLC model and the vehicle-to-vehicle (V2V) VLC outdoor model using a combination of multiple PLS techniques as beamforming, secure communication zones, and friendly jamming is enhanced. The proposed model security performance was measured with respect to the signal to noise ratio (SNR), received optical power, and bit error rate (BER) Matlab simulation results

    Physical security with power beacon assisted in half-duplex relaying networks over Rayleigh fading channel: performance analysis

    Get PDF
    In this research, we proposed and investigated physical security with power beacon assisted in half-duplex relaying networks over a Rayleigh fading channel. In this model, the source (S) node communicates with the destination (D) node via the helping of the intermediate relay (R) node. The D and R nodes harvest energy from the power beacon (PB) node in the presence of a passive eavesdropper (E) node. Then we derived the integral form of the system outage probability (OP) and closed form of the intercept probability (IP). The correctness of the analytical of the OP and IP is verified by the Monte Carlo simulation. The influence of the main system parameters on the OP and IP also is investigated. The research results indicated that the analytical results are the same as the simulation ones

    Improving Secrecy Performance of a Wirelessly Powered network

    Get PDF
    This paper considers the secrecy communication of a wirelessly powered network, where an energy constrained legitimate transmitter (Alice) sends message to a legitimate receiver (Bob) with the energy harvested from a dedicated power beacon (PB), while an eavesdropper (Eve) intends to intercept the information. A simple time-switching protocol with a time-switching ratio α\alpha is used to supply power for the energy constrained legitimate transmitter. To improve the physical layer security, we firstly propose a protocol that combines maximum ratio transmission (MRT) with zero-forcing (ZF) jamming for the case where Eve is passive in the network, so that Alice only has access to the channel state information (CSI) of Bob. Then we propose a protocol that uses a ZF transmitting strategy to minimize the signal-to-noise ratio (SNR) at Eve for the case where Eve is active in the network, so that Alice only has access to the partial CSI of Eve. Closed-form expressions and simple approximations of the connection outage probability and secrecy outage probability are derived for both protocols. Furthermore, the secrecy throughput as well as the diversity orders achieved by our proposed protocols are characterized and the optimal time-switching ratio α\alpha and power allocation coefficient β\beta for secrecy throughput maximization are derived in the high SNR regime. Finally, numerical results validate the effectiveness of the proposed schemes

    Analyzing Power Beacon Assisted Multi-Source Transmission Using Markov Chain

    Full text link
    Wireless power transmission (WPT) is envisioned to be a promising technology for prolonging the lifetime of wireless devices in energy-constrained networks. This paper presents a general power beacon (PB) assisted multi-source transmission, where a practical source selection scheme with information transmission (IT) mode or non-IT mode is developed to maximize the transmission reliability. In the IT mode, a zero-forcing (ZF) beamformed signal with no interference to the destination is transmitted at the multi-antenna PB to supply wireless energy for the sources, and bring non-negative effect to the destination. Among multiple sources, the energy-sufficient source with the best channel quality is selected for wireless information transmission (WIT), while the other sources remain for energy harvesting. In the non-IT mode, the equal power transmission is adopted at PB to focus on energy delivery. Using Markov chain theory, the energy arrival and departure of each finite-capacity storage at the source is characterized mathematically, and the comprehensive analytical expressions of the energy outage probability (EOP), the connection outage probability (COP), and the average transmission delay (ATD) are formulated and derived. Our results reveal that the EOP, COP, and ATD can be significantly improved via increasing the number of sources deployed in the proposed network with finite transmit power of PB. We also prove that the multi-source network will never experience energy outage with infinite transmit power of PB

    On the Performance of Power Beacon-Assisted D2D Communications in the Presence of Multi-Jammers and Eavesdropper

    Get PDF
    In this work, we investigate the performance analysis of a device-to-device (D2D) communication network under an eavesdropper E attack. Besides, we assume that E is located in the proximal region where it can overhear the information from the source S. Specifically, S transmits information to the destination D, adopting the power beacon's energy to surmount the limited energy budget. Moreover, to reduce the quality of the eavesdropping link, the cooperative jamming technique can be used, where the multi-friendly jammers are employed to generate the artificial noises to E continuously. As considering the above presentation, we derive the quality of system analysis in terms of the outage probability (OP), intercept probability (IP), and secrecy outage probability (SOP) of the proposed system model. Finally, the Monte-Carlo simulations are performed to corroborate the exactness of the mathematical analysis.This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited
    • …
    corecore