2,493 research outputs found

    Power Quality Enhancement in Electricity Grids with Wind Energy Using Multicell Converters and Energy Storage

    Get PDF
    In recent years, the wind power industry is experiencing a rapid growth and more wind farms with larger size wind turbines are being connected to the power system. While this contributes to the overall security of electricity supply, large-scale deployment of wind energy into the grid also presents many technical challenges. Most of these challenges are one way or another, related to the variability and intermittent nature of wind and affect the power quality of the distribution grid. Power quality relates to factors that cause variations in the voltage level and frequency as well as distortion in the voltage and current waveforms due to wind variability which produces both harmonics and inter-harmonics. The main motivation behind work is to propose a new topology of the static AC/DC/AC multicell converter to improve the power quality in grid-connected wind energy conversion systems. Serial switching cells have the ability to achieve a high power with lower-size components and improve the voltage waveforms at the input and output of the converter by increasing the number of cells. Furthermore, a battery energy storage system is included and a power management strategy is designed to ensure the continuity of power supply and consequently the autonomy of the proposed system. The simulation results are presented for a 149.2 kW wind turbine induction generator system and the results obtained demonstrate the reduced harmonics, improved transient response, and reference tracking of the voltage output of the wind energy conversion system.Peer reviewedFinal Accepted Versio

    Power Converter of Electric Machines, Renewable Energy Systems, and Transportation

    Get PDF
    Power converters and electric machines represent essential components in all fields of electrical engineering. In fact, we are heading towards a future where energy will be more and more electrical: electrical vehicles, electrical motors, renewables, storage systems are now widespread. The ongoing energy transition poses new challenges for interfacing and integrating different power systems. The constraints of space, weight, reliability, performance, and autonomy for the electric system have increased the attention of scientific research in order to find more and more appropriate technological solutions. In this context, power converters and electric machines assume a key role in enabling higher performance of electrical power conversion. Consequently, the design and control of power converters and electric machines shall be developed accordingly to the requirements of the specific application, thus leading to more specialized solutions, with the aim of enhancing the reliability, fault tolerance, and flexibility of the next generation power systems

    Power Electronic Converter Configuration and Control for DC Microgrid Systems

    Get PDF

    Ancillary Services in Hybrid AC/DC Low Voltage Distribution Networks

    Get PDF
    In the last decade, distribution systems are experiencing a drastic transformation with the advent of new technologies. In fact, distribution networks are no longer passive systems, considering the current integration rates of new agents such as distributed generation, electrical vehicles and energy storage, which are greatly influencing the way these systems are operated. In addition, the intrinsic DC nature of these components, interfaced to the AC system through power electronics converters, is unlocking the possibility for new distribution topologies based on AC/DC networks. This paper analyzes the evolution of AC distribution systems, the advantages of AC/DC hybrid arrangements and the active role that the new distributed agents may play in the upcoming decarbonized paradigm by providing different ancillary services.Ministerio de Economía y Competitividad ENE2017-84813-RUnión Europea (Programa Horizonte 2020) 76409

    Power Electronics in Renewable Energy Systems

    Get PDF

    Power quality and electromagnetic compatibility: special report, session 2

    Get PDF
    The scope of Session 2 (S2) has been defined as follows by the Session Advisory Group and the Technical Committee: Power Quality (PQ), with the more general concept of electromagnetic compatibility (EMC) and with some related safety problems in electricity distribution systems. Special focus is put on voltage continuity (supply reliability, problem of outages) and voltage quality (voltage level, flicker, unbalance, harmonics). This session will also look at electromagnetic compatibility (mains frequency to 150 kHz), electromagnetic interferences and electric and magnetic fields issues. Also addressed in this session are electrical safety and immunity concerns (lightning issues, step, touch and transferred voltages). The aim of this special report is to present a synthesis of the present concerns in PQ&EMC, based on all selected papers of session 2 and related papers from other sessions, (152 papers in total). The report is divided in the following 4 blocks: Block 1: Electric and Magnetic Fields, EMC, Earthing systems Block 2: Harmonics Block 3: Voltage Variation Block 4: Power Quality Monitoring Two Round Tables will be organised: - Power quality and EMC in the Future Grid (CIGRE/CIRED WG C4.24, RT 13) - Reliability Benchmarking - why we should do it? What should be done in future? (RT 15

    Optimized Modulation and Thermal Management for Modular Power Converters

    Get PDF
    The transition to a more and more decentralized power generation based on renewable energy generation is accompanied by high challenges. Modular power converters play a central role in facing these challenges, not only for grid integration but also to provide flexible services, highly efficient power transmission and safe storage integration. These goals are the key elements in becoming independent from fossil and nuclear power plants in near future. Even if the costs for renewable energy power plants like wind or photovoltaic systems are already competitive to conventional solutions, more flexible operation and further reduction in costs are required for faster global transformation towards sustainable energy systems. The further optimization of modular power converters can be seen as an ideal way to achieve these ambitious goals. It is therefore chosen as the focus of this work

    Grid integration of renewable power generation

    Get PDF
    This thesis considers the use of three-phase voltage and current source inverters as interfacing units for renewable power, specifically photovoltaic (PV) into the ac grid. This thesis presented two modulation strategies that offer the possibility of operating PV inverters in grid and islanding modes, with reduced switching losses. The first modulation strategy is for the voltage source inverter (VSI), and exploits 3rd harmonic injection with selective harmonic elimination (SHE) to improve performance at low and high modulation indices, where the traditional SHE implementation experiences difficulties due to pulse dropping. The simulations and experimentation presented show that the proposed SHE allows grid PV inverters to be operated with less than a 1kHz effective switching frequency per device. This is vital in power generation, especially in medium and high power applications. Pulse dropping is avoided as the proposed modified SHE spreads the switching angles over 90°, in addition increasing the modulation index. The second proposed modulation strategy, called direct regular sampled pulse width modulation (DRSPWM), is for the current source inverter (CSI). It exploits a combination of forced and natural commutation imposed by the co-existence of an insulated gate bipolar transistor in series with a diode in a three phase current source inverter, to determine device dwell times and switching sequence selection. The DRSPWM strategy reduces switching frequency per device in a CSI by suspending each phase for 60°, similar to VSI dead-band, thus low switching losses are expected. Other benefits include simple digital platform implementation and more flexible switching sequence selection and pulse placement than with space vector modulation. The validity of the DRSPWM is confirmed using simulations and experimentation. This thesis also presents a new dc current offset compensation technique used to facilitate islanding or grid operation of inverter based distributed generation, with a reduced number of interfacing transformers. The proposed technique will enable transformerless operation of all inverters within the solar farm, and uses only one power transformer at the point of common coupling. The validity of the presented modulation strategies and dc current offset compensation technique are substantiated using simulations and experimentation.This thesis considers the use of three-phase voltage and current source inverters as interfacing units for renewable power, specifically photovoltaic (PV) into the ac grid. This thesis presented two modulation strategies that offer the possibility of operating PV inverters in grid and islanding modes, with reduced switching losses. The first modulation strategy is for the voltage source inverter (VSI), and exploits 3rd harmonic injection with selective harmonic elimination (SHE) to improve performance at low and high modulation indices, where the traditional SHE implementation experiences difficulties due to pulse dropping. The simulations and experimentation presented show that the proposed SHE allows grid PV inverters to be operated with less than a 1kHz effective switching frequency per device. This is vital in power generation, especially in medium and high power applications. Pulse dropping is avoided as the proposed modified SHE spreads the switching angles over 90°, in addition increasing the modulation index. The second proposed modulation strategy, called direct regular sampled pulse width modulation (DRSPWM), is for the current source inverter (CSI). It exploits a combination of forced and natural commutation imposed by the co-existence of an insulated gate bipolar transistor in series with a diode in a three phase current source inverter, to determine device dwell times and switching sequence selection. The DRSPWM strategy reduces switching frequency per device in a CSI by suspending each phase for 60°, similar to VSI dead-band, thus low switching losses are expected. Other benefits include simple digital platform implementation and more flexible switching sequence selection and pulse placement than with space vector modulation. The validity of the DRSPWM is confirmed using simulations and experimentation. This thesis also presents a new dc current offset compensation technique used to facilitate islanding or grid operation of inverter based distributed generation, with a reduced number of interfacing transformers. The proposed technique will enable transformerless operation of all inverters within the solar farm, and uses only one power transformer at the point of common coupling. The validity of the presented modulation strategies and dc current offset compensation technique are substantiated using simulations and experimentation
    corecore