177 research outputs found

    Distributed multi-hop reservation scheme for wireless personal area ultra-wideband networks

    Get PDF
    Ultra-wideband (UWB) technology is a promising technology for multimedia applications in wireless personal area networks (WPANs) that supports very high data rates with lower power transmission for short range communication. The limitation of coverage radius of UWB network necessitates for multihop transmissions. Unfortunately, as the number of hops increases, the quality of service (QoS) degrades rapidly in multihop network. The main goal of this research is to develop and enhance multihop transmission that ensures QoS of real time traffic through the proposed distributed multihop reservation (DMR) scheme. The DMR scheme consists of two modules; distributed multihop reservation protocol (DMRP) and path selection. DMRP incorporates resource reservation, routing and connection setup that are extended on the existing WiMedia Media Access Control protocol (MAC). On the other hand, the path selection determines the optimal path that makes up the multihop route. The path selection selects nodes based on the highest Signal to Interference and Noise Ratio (SINR). The performance of DMR scheme has been verified based on the performance of the video traffic transmission. The main metrics of QoS are measured in terms of Peak Signal- to- Noise ratio (PSNR), End-to-End (E2E) delay, and throughput. The results show that DMRP compared to Multiple Resources Reservation Scheme (MRRS) in six (6) hops transmission has enhanced the average PSNR by 16.5%, reduced the average E2E delay by 14.9% and has increased the throughput by 11.1%. The DMR scheme which is the inclusion of path selection in DMRP has been compared to Link Quality Multihop Relay (LQMR). DMR scheme has improved the video quality transmission by 17.5%, reduced the average E2E delay by 18.6% and enhanced the average throughput by 20.3%. The QoS of six (6) hops transmission employing DMR scheme is almost sustained compared to two hops transmission with the QoS experiencing only slight degradation of about 2.0%. This is a considerable achievement as it is well known that as the number of hops increases the QoS in multihop transmission degrades very rapidly. Thus DMR scheme has shown to significantly improve the performance of real time traffic on UWB multihop network. In general, DMR can be applied to any WPAN network that exploit multihop transmission

    Energy-efficiency media access control in wireless ad hoc networks

    Get PDF

    Design and Analysis of Medium Access Control Protocols for Broadband Wireless Networks

    Get PDF
    The next-generation wireless networks are expected to integrate diverse network architectures and various wireless access technologies to provide a robust solution for ubiquitous broadband wireless access, such as wireless local area networks (WLANs), Ultra-Wideband (UWB), and millimeter-wave (mmWave) based wireless personal area networks (WPANs), etc. To enhance the spectral efficiency and link reliability, smart antenna systems have been proposed as a promising candidate for future broadband access networks. To effectively exploit the increased capabilities of the emerging wireless networks, the different network characteristics and the underlying physical layer features need to be considered in the medium access control (MAC) design, which plays a critical role in providing efficient and fair resource sharing among multiple users. In this thesis, we comprehensively investigate the MAC design in both single- and multi-hop broadband wireless networks, with and without infrastructure support. We first develop mathematical models to identify the performance bottlenecks and constraints in the design and operation of existing MAC. We then use a cross-layer approach to mitigate the identified bottleneck problems. Finally, by evaluating the performance of the proposed protocols with analytical models and extensive simulations, we determine the optimal protocol parameters to maximize the network performance. In specific, a generic analytical framework is developed for capacity study of an IEEE 802.11 WLAN in support of non-persistent asymmetric traffic flows. The analysis can be applied for effective admission control to guarantee the quality of service (QoS) performance of multimedia applications. As the access point (AP) becomes the bottleneck in an infrastructure based WLAN, we explore the multiple-input multiple-output (MIMO) capability in the future IEEE 802.11n WLANs and propose a MIMO-aware multi-user (MU) MAC. By exploiting the multi-user degree of freedom in a MIMO system to allow the AP to communicate with multiple users in the downlink simultaneously, the proposed MU MAC can minimize the AP-bottleneck effect and significantly improve the network capacity. Other enhanced MAC mechanisms, e.g., frame aggregation and bidirectional transmissions, are also studied. Furthermore, different from a narrowband system where simultaneous transmissions by nearby neighbors collide with each other, wideband system can support multiple concurrent transmissions if the multi-user interference can be properly managed. Taking advantage of the salient features of UWB and mmWave communications, we propose an exclusive region (ER) based MAC protocol to exploit the spatial multiplexing gain of centralized UWB and mmWave based wireless networks. Moreover, instead of studying the asymptotic capacity bounds of arbitrary networks which may be too loose to be useful in realistic networks, we derive the expected capacity or transport capacity of UWB and mmWave based networks with random topology. The analysis reveals the main factors affecting the network (transport) capacity, and how to determine the best protocol parameters to maximize the network capacity. In addition, due to limited transmission range, multi-hop relay is necessary to extend the communication coverage of UWB networks. A simple, scalable, and distributed UWB MAC protocol is crucial for efficiently utilizing the large bandwidth of UWB channels and enabling numerous new applications cost-effectively. To address this issue, we further design a distributed asynchronous ER based MAC for multi-hop UWB networks and derive the optimal ER size towards the maximum network throughput. The proposed MAC can significantly improve both network throughput and fairness performance, while the throughput and fairness are usually treated as a tradeoff in other MAC protocols

    Cross-layer schemes for performance optimization in wireless networks

    Get PDF
    Wireless networks are undergoing rapid progress and inspiring numerous applications. As the application of wireless networks becomes broader, they are expected to not only provide ubiquitous connectivity, but also support end users with certain service guarantees. End-to-end delay is an important Quality of Service (QoS) metric in multihop wireless networks. This dissertation addresses how to minimize end-to-end delay through joint optimization of network layer routing and link layer scheduling. Two cross-layer schemes, a loosely coupled cross-layer scheme and a tightly coupled cross-layer scheme, are proposed. The two cross-layer schemes involve interference modeling in multihop wireless networks with omnidirectional antenna. In addition, based on the interference model, multicast schedules are optimized to minimize the total end-to-end delay. Throughput is another important QoS metric in wireless networks. This dissertation addresses how to leverage the spatial multiplexing function of MIMO links to improve wireless network throughput. Wireless interference modeling of a half-duplex MIMO node is presented. Based on the interference model, routing, spatial multiplexing, and scheduling are jointly considered in one optimization model. The throughput optimization problem is first addressed in constant bit rate networks and then in variable bit rate networks. In a variable data rate network, transmitters can use adaptive coding and modulation schemes to change their data rates so that the data rates are supported by the Signal to Noise and Interference Ratio (SINR). The problem of achieving maximum throughput in a millimeter-wave wireless personal area network is studied --Abstract, page iv

    The Wireless Body Area Sensor Networks and Routing Strategies: Nomenclature and Review of Literature

    Get PDF
    WBASN is an effective solution that has been proposed in terms of improving the solutions and there are varied benefits that have been achieved from the usage of WBASN solutions in communication, healthcare domain. From the review of stats on rising number of wireless devices and solutions that are coming up which is embraced by the people as wearable devices, implants for medical diagnostic solutions, etc. reflect upon the growing demand for effective models. However, the challenge is about effective performance of such solutions with optimal efficiency. Due to certain intrinsic factors like numerous standards that are available, and also due to the necessity for identifying the best solutions that are based on application requirements. Some of the key issues that have to be considered in the process of WBASN are about the impacts that are taking place from the wireless medium, the lifetime of batteries in the WBASN devices and the other significant condition like the coexistence of the systems among varied other wireless networks that are constituted in the proximity. In this study, scores of models that has been proposed pertaining to MAC protocols for WBASN solutions has been reviewed to understand the efficacy of the existing systems, and a scope for process improvement has been explored for conducting in detail research and developing a solution

    Cooperative Network Formation between Swarm Robots

    Get PDF
    Swarm robot technology could be used in future daily applications. It does not require a lot of manpower once it is deployed into the field compared to doing large scale tasks manually done by humans. However, the downside of using swarm robots is that when the number of agents grow the communication between the swarms will also gradually get more complicated. Besides that, when moving large number of agents in a swarm towards completing a specific task together will also be a challenge due to the monitoring of each swarm agent’s location. Lastly, the swarms should be able to reestablish their location with the large swarms if it ever gets lost from the pack. In order to overcome these problems, engineers have been exploring various ways of making robots work together and communicate with each other with different methods and tools. For this project, it will focus more on the type of wireless communication used, ranging from short range Bluetooth to long range Wi-Fi. With the wireless communication established, the swarms should be able to perform multi-hop communication with each agents through different network topologies. Finally, the swarm robots requires a cooperative algorithm in order for it to adapt to various situation in the different environments. When each agent is deployed into outdoor environments, it will have to adapt to the surroundings while maintaining a certain predetermined flight formation and constant communication with each agent and the base station

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    System design and performance analysis of wireless body area networks

    Get PDF
    One key solution to provide affordable and proactive healthcare facilities to overcome the fast world population growth and a shortage of medical professionals is through health monitoring systems capable of early disease detection and real-time data transmission leading to considerable improvements in the quality of human life. Wireless body area networks (WBANs) are proposed as promising approaches to providing better mobility and flexibility experience than traditional wired medical systems by using low-power, miniaturised sensors inside, around, or off the human body and are employed to monitor physiological signals. However, the design of reliable and energy efficient in-body communication systems is still a major research challenge since implant devices are characterised by strict requirements on size, energy consumption and safety. Moreover, there is still no agreement regarding QoS support in WBANs. The first part of this work concentrates on the design and performance evaluation of WBAN communication systems involving the ‘in-body to in-body’ and ‘in-body to on-body’ scenarios. The essential step is to derive the statistical WBAN path loss (PL) models, which characterise the signal propagation energy loss transmitting via intra-body region. Moreover, from the point of view of human body safety evaluation, the obtained specific absorption rate (SAR) values are compared with the latest Institute of Electrical and Electronics Engineers (IEEE) 802.15.6 Task Group technical standard and the International Commission on Non-Ionizing Radiation Protection (ICNIRP) safety guidelines. Link budget analysis is then presented using a range of energy-efficient modulation schemes, and the results are given including the transmission distance, data rate and transmitting power in individual sections. On the other hand, major quality of service (QoS) support challenges in WBANs are discussed and investigated. To achieve higher lifetime and lower network energy consumption, different data routing protocol methods, including incremental relaying and the two-relay based routing technique are taken into account. A set of key QoS metrics for linear mathematical models is given along with the related subjective functions. The incremental relaying routing protocol promises significant enhancements in in-body WBAN network lifetime by minimising the overall communication distance while the two-relay based routing method achieves better performance in terms of emergency data transmission and high traffic condition, QoS-aware WBANs design. Moreover, to handle real-time high data transmission applications such as capsule endoscope image transmission, a flexible QoS-aware wireless body area sensor networks (WBASNs) model is proposed and evaluated that can bring novel solutions for a realistic multi-user hospital environment regarding information packet collision probability, manageable numbers of sensor nodes and a wide range of data rates
    • 

    corecore