1,396 research outputs found

    Quantum search algorithms, quantum wireless, and a low-complexity maximum likelihood iterative quantum multi-user detector design

    No full text
    The high complexity of numerous optimal classic communication schemes, such as the maximum likelihood (ML) multiuser detector (MUD), often prevents their practical implementation. In this paper, we present an extensive review and tutorial on quantum search algorithms (QSA) and their potential applications, and we employ a QSA that finds the minimum of a function in order to perform optimal hard MUD with a quadratic reduction in the computational complexity when compared to that of the ML MUD. Furthermore, we follow a quantum approach to achieve the same performance as the optimal soft-input soft-output classic detectors by replacing them with a quantum algorithm, which estimates the weighted sum of a function’s evaluations. We propose a soft-input soft-output quantum-assisted MUD (QMUD) scheme, which is the quantum-domain equivalent of the ML MUD. We then demonstrate its application using the design example of a direct-sequence code division multiple access system employing bit-interleaved coded modulation relying on iterative decoding, and compare it with the optimal ML MUD in terms of its performance and complexity. Both our extrinsic information transfer charts and bit error ratio curves show that the performance of the proposed QMUD and that of the optimal classic MUD are equivalent, but the QMUD’s computational complexity is significantly lower

    Design guidelines for spatial modulation

    No full text
    A new class of low-complexity, yet energyefficient Multiple-Input Multiple-Output (MIMO) transmission techniques, namely the family of Spatial Modulation (SM) aided MIMOs (SM-MIMO) has emerged. These systems are capable of exploiting the spatial dimensions (i.e. the antenna indices) as an additional dimension invoked for transmitting information, apart from the traditional Amplitude and Phase Modulation (APM). SM is capable of efficiently operating in diverse MIMO configurations in the context of future communication systems. It constitutes a promising transmission candidate for large-scale MIMO design and for the indoor optical wireless communication whilst relying on a single-Radio Frequency (RF) chain. Moreover, SM may also be viewed as an entirely new hybrid modulation scheme, which is still in its infancy. This paper aims for providing a general survey of the SM design framework as well as of its intrinsic limits. In particular, we focus our attention on the associated transceiver design, on spatial constellation optimization, on link adaptation techniques, on distributed/ cooperative protocol design issues, and on their meritorious variants

    Turbo trellis-coded hierarchical modulation assisted decode-and-forward cooperation

    No full text
    Hierarchical modulation, which is also known as layered modulation, has been widely adopted across the telecommunication industry. Its strict backward compatibility with single-layer modems and its low complexity facilitate the seamless upgrading of wireless communication services. The potential employment of hierarchical modulation in cooperative communications has the promise of increasing the achievable throughput at a low power consumption. In this paper, we propose a single-relay aided hierarchical modulation based cooperative communication system. The source employs a pair of Turbo Trellis-Coded Modulation schemes relying on specially designed hierarchical modulation, while the relay invokes the Decode-and-Forward protocol. We have analysed the system’s achievable rate as well as its bit error ratio using Monte-Carlo simulations. The results demonstrate that the power consumption of the entire system is reduced to 3.62 dB per time slot by our scheme

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Joint Interleaver and Modulation Design For Multi-User SWIPT-NOMA

    Get PDF
    Radio frequency (RF) signals can be relied upon for conventional wireless information transfer (WIT) and for challenging wireless power transfer (WPT), which triggers the significant research interest in the topic of simultaneous wireless information and power transfer (SWIPT). By further exploiting the advanced non-orthogonal-multiple-access (NOMA) technique, we are capable of improving the spectrum efficiency of the resource-limited SWIPT system. In our SWIPT system, a hybrid access point (H-AP) superimposes the modulated symbols destined to multiple WIT users by exploiting the power-domain NOMA, while WPT users are capable of harvesting the energy carried by the superposition symbols. In order to maximize the amount of energy transferred to the WPT users, we propose a joint design of the energy interleaver and the constellation rotation-based modulator in the symbol-block level by constructively superimposing the symbols destined to the WIT users in the power domain. Furthermore, a transmit power allocation scheme is proposed to guarantee the symbol-error-ratio (SER) of all the WIT users. By considering the sensitivity of practical energy harvesters, simulation results demonstrate that our scheme is capable of substantially increasing the WPT performance without any remarkable degradation of the WIT performance
    corecore