1,237 research outputs found

    Security in Cognitive Radio Networks

    Full text link
    In this paper, we investigate the information-theoretic security by modeling a cognitive radio wiretap channel under quality-of-service (QoS) constraints and interference power limitations inflicted on primary users (PUs). We initially define four different transmission scenarios regarding channel sensing results and their correctness. We provide effective secure transmission rates at which a secondary eavesdropper is refrained from listening to a secondary transmitter (ST). Then, we construct a channel state transition diagram that characterizes this channel model. We obtain the effective secure capacity which describes the maximum constant buffer arrival rate under given QoS constraints. We find out the optimal transmission power policies that maximize the effective secure capacity, and then, we propose an algorithm that, in general, converges quickly to these optimal policy values. Finally, we show the performance levels and gains obtained under different channel conditions and scenarios. And, we emphasize, in particular, the significant effect of hidden-terminal problem on information-theoretic security in cognitive radios.Comment: Submitted to CISS 201

    Performance Improvement in Muli-user MIMO Networks via Interference Alignment

    Get PDF
    Almost all wireless networks are interference limited. Interference management has been always a primary concern for large section of current wireless networks with exponentially growing devices, lack of centralized medium access, power management. Because of broadcast nature of the wireless channel, all signals from simultaneous transmissions from devices apart in the same space, are added to the desired signal at the receiver end. Therefore optimal spectrum efficiency in such systems mandates distributed, low complexity interference management strategies with very less overhead which should be far more superior than existing successive interference cancellation, highly complex multiuser detection techniques. In this thesis, a novel interference management scheme- “Interference alignment” scheme for multi user scenario is investigated and analysed supporting the arguments with numerical results for most scenarios. Firstly, the concept of interference channel, Degrees of Freedom were well established which are prerequisite in understanding the predicament of multi user wireless channels. Later on, interference alignment concept has been put forward stating its origin back from linear algebra. IA for K-user MIMO is studied. In a fully connected K-user network with perfect channel state information, IA minimizes the interference space dimension at intended receivers thus maximizing the achievable capacity of the entire channel and increasing the Multiplexing gain. Later on the idea of IA is extended to multi-hop networks. A practical cellular multi-hop wireless network is considered and distributed interference alignment technique is implemented which shows superior performance even in high interference case. All IA schemes assume that the channels are full rank richly scattered environments which in practise is not always possible. The idea of using relays to act as external scatters which increase the rank of effective channel observed is considered. So two novel distributed relaying schemes have been proposed modifying the existing IA scheme to fit the case for rank deficient channels and still achieve multiplexing gain on par with full rank channels. The proposed algorithms doesn’t require global channel state information at all nodes except at relay nodes, doesn’t need large symbol extensions, and still are able to enhance the sum capacity of the networ

    Power-trading in wireless communications: a cooperative networking business model

    Get PDF
    Managing the power resource in battery operated wireless devices is very crucial for extending the lifetime, here we propose the concept of power trading in wireless communications. We present a business model using sealed bid procurement auction based game theory for power-trading in cooperative wireless communication with quality of service (QoS) constraints. We formulate the problem as an auction in a buyer's market sequentially/repeatedly played with a single source and a multiple relay network. The source, in-need of cooperation of a relay due to lack of battery power to communicate with the destination, broadcasts a cooperation-request specifying its QoS requirements. The QoS that we consider here are the bit error rate and the total delay associated with relaying the source data. The relays respond with their bids in terms of Euros/bit, and the source selects the best relay based on the bids. The relays compete with each other to win the game and profit from power trading. Each relay updates its pricing index via reinforcement learning to win the game during successive bidding intervals of the repeated game. Based on this model our results show that the relay node with the best features such as a better wireless channel and a better geographical position with respect to the source and destination nodes has a better chance of winning the game, and hence giving rise to a dominant strategy. More importantly, we show that the gains from the wireless channels can be converted into economic profits which is an attractive feature of the proposed business model for power trading

    Wireless transmission protocols using relays for broadcast and information exchange channels

    No full text
    Relays have been used to overcome existing network performance bottlenecks in meeting the growing demand for large bandwidth and high quality of service (QoS) in wireless networks. This thesis proposes several wireless transmission protocols using relays in practical multi-user broadcast and information exchange channels. The main theme is to demonstrate that efficient use of relays provides an additional dimension to improve reliability, throughput, power efficiency and secrecy. First, a spectrally efficient cooperative transmission protocol is proposed for the multiple-input and singleoutput (MISO) broadcast channel to improve the reliability of wireless transmission. The proposed protocol mitigates co-channel interference and provides another dimension to improve the diversity gain. Analytical and simulation results show that outage probability and the diversity and multiplexing tradeoff of the proposed cooperative protocol outperforms the non-cooperative scheme. Second, a two-way relaying protocol is proposed for the multi-pair, two-way relaying channel to improve the throughput and reliability. The proposed protocol enables both the users and the relay to participate in interference cancellation. Several beamforming schemes are proposed for the multi-antenna relay. Analytical and simulation results reveal that the proposed protocol delivers significant improvements in ergodic capacity, outage probability and the diversity and multiplexing tradeoff if compared to existing schemes. Third, a joint beamforming and power management scheme is proposed for multiple-input and multiple-output (MIMO) two-way relaying channel to improve the sum-rate. Network power allocation and power control optimisation problems are formulated and solved using convex optimisation techniques. Simulation results verify that the proposed scheme delivers better sum-rate or consumes lower power when compared to existing schemes. Fourth, two-way secrecy schemes which combine one-time pad and wiretap coding are proposed for the scalar broadcast channel to improve secrecy rate. The proposed schemes utilise the channel reciprocity and employ relays to forward secret messages. Analytical and simulation results reveal that the proposed schemes are able to achieve positive secrecy rates even when the number of users is large. All of these new wireless transmission protocols help to realise better throughput, reliability, power efficiency and secrecy for wireless broadcast and information exchange channels through the efficient use of relays

    Study of Techniques For Reliable Data Transmission In Wireless Sensor Networks

    Get PDF
    This thesis addresses the problem of traffic transfer in wireless sensor networks (WSN). In such networks, the foremost challenge in the design of data communication techniques is that the sensor's transceiver circuitry consumes the major portion of the available power. Thus, due to stringent limitations on the nodes' hardware and power resources in WSN, data transmission must be power-efficient in order to reduce the nodes' power consumption, and hence to maximize the network lifetime while satisfying the required data rate. The transmit power is itself under the influence of data rate and source-destination distance. Thanks to the dense deployment of nodes in WSN, multi-hop communication can be applied to mitigate the transmit power for sending bits of information, i.e., gathered data by the sensor nodes to the destination node (gateway) compared to single-hop scenarios. In our approach, we achieve a reasonable trade-off between power-efficiency and transmission data rate by devising cooperative communication strategies through which the network traffic (i.e. nodes' gathered information) is relayed hop-by-hop to the gateway. In such strategies, the sensor nodes serve as data originator as well as data router, and assist the data transfer from the sensors to the gateway. We develop several data transmission schemes, and we prove their capability in transmitting the data from the sensor nodes at the highest possible rates allowed by the network limitations. In particular, we consider that (i) network has linear or quasi-linear topology, (ii) nodes are equipped with half-duplex radios, implying that they cannot transmit and receive simultaneously, (iii) nodes transmit their traffic at the same average rate. We compute the average data rate corresponding to each proposed strategy. Next, we take an information-theoretic approach and derive an upper bound to the achievable rate of traffic transfer in the networks under consideration, and analyze its tightness. We show that our proposed strategies outperform the conventional multi-hop scheme, and their average achievable rate approaches the upper bound at low levels of signal to noise ratio

    Spectral, Energy and Computation Efficiency in Future 5G Wireless Networks

    Get PDF
    Wireless technology has revolutionized the way people communicate. From first generation, or 1G, in the 1980s to current, largely deployed 4G in the 2010s, we have witnessed not only a technological leap, but also the reformation of associated applications. It is expected that 5G will become commercially available in 2020. 5G is driven by ever-increasing demands for high mobile traffic, low transmission delay, and massive numbers of connected devices. Today, with the popularity of smart phones, intelligent appliances, autonomous cars, and tablets, communication demands are higher than ever, especially when it comes to low-cost and easy-access solutions. Existing communication architecture cannot fulfill 5G’s needs. For example, 5G requires connection speeds up to 1,000 times faster than current technology can provide. Also, from transmitter side to receiver side, 5G delays should be less than 1ms, while 4G targets a 5ms delay speed. To meet these requirements, 5G will apply several disruptive techniques. We focus on two of them: new radio and new scheme. As for the former, we study the non-orthogonal multiple access (NOMA) and as for the latter, we use mobile edge computing (MEC). Traditional communication systems allow users to communicate alternatively, which clearly avoids inter-user interference, but also caps the connection speed. NOMA, on the other hand, allows multiple users to transmit simultaneously. While NOMA will inevitably cause excessive interference, we prove such interference can be mitigated by an advanced receiver side technique. NOMA has existed on the research frontier since 2013. Since that time, both academics and industry professionals have extensively studied its performance. In this dissertation, our contribution is to incorporate NOMA with several potential schemes, such as relay, IoT, and cognitive radio networks. Furthermore, we reviewed various limitations on NOMA and proposed a more practical model. In the second part, MEC is considered. MEC is a transformation from the previous cloud computing system. In particular, MEC leverages powerful devices nearby and instead of sending information to distant cloud servers, the transmission occurs in closer range, which can effectively reduce communication delay. In this work, we have proposed a new evaluation metric for MEC which can more effectively leverage the trade-off between the amount of computation and the energy consumed thereby. A practical communication system for wearable devices is proposed in the last part, which combines all the techniques discussed above. The challenges for wearable communication are inherent in its diverse needs, as some devices may require low speed but high reliability (factory sensors), while others may need low delay (medical devices). We have addressed these challenges and validated our findings through simulations
    corecore