1,492 research outputs found

    Power Allocation Games in Wireless Networks of Multi-antenna Terminals

    Full text link
    We consider wireless networks that can be modeled by multiple access channels in which all the terminals are equipped with multiple antennas. The propagation model used to account for the effects of transmit and receive antenna correlations is the unitary-invariant-unitary model, which is one of the most general models available in the literature. In this context, we introduce and analyze two resource allocation games. In both games, the mobile stations selfishly choose their power allocation policies in order to maximize their individual uplink transmission rates; in particular they can ignore some specified centralized policies. In the first game considered, the base station implements successive interference cancellation (SIC) and each mobile station chooses his best space-time power allocation scheme; here, a coordination mechanism is used to indicate to the users the order in which the receiver applies SIC. In the second framework, the base station is assumed to implement single-user decoding. For these two games a thorough analysis of the Nash equilibrium is provided: the existence and uniqueness issues are addressed; the corresponding power allocation policies are determined by exploiting random matrix theory; the sum-rate efficiency of the equilibrium is studied analytically in the low and high signal-to-noise ratio regimes and by simulations in more typical scenarios. Simulations show that, in particular, the sum-rate efficiency is high for the type of systems investigated and the performance loss due to the use of the proposed suboptimum coordination mechanism is very small

    Energy-Efficient Resource Allocation in Wireless Networks: An Overview of Game-Theoretic Approaches

    Full text link
    An overview of game-theoretic approaches to energy-efficient resource allocation in wireless networks is presented. Focusing on multiple-access networks, it is demonstrated that game theory can be used as an effective tool to study resource allocation in wireless networks with quality-of-service (QoS) constraints. A family of non-cooperative (distributed) games is presented in which each user seeks to choose a strategy that maximizes its own utility while satisfying its QoS requirements. The utility function considered here measures the number of reliable bits that are transmitted per joule of energy consumed and, hence, is particulary suitable for energy-constrained networks. The actions available to each user in trying to maximize its own utility are at least the choice of the transmit power and, depending on the situation, the user may also be able to choose its transmission rate, modulation, packet size, multiuser receiver, multi-antenna processing algorithm, or carrier allocation strategy. The best-response strategy and Nash equilibrium for each game is presented. Using this game-theoretic framework, the effects of power control, rate control, modulation, temporal and spatial signal processing, carrier allocation strategy and delay QoS constraints on energy efficiency and network capacity are quantified.Comment: To appear in the IEEE Signal Processing Magazine: Special Issue on Resource-Constrained Signal Processing, Communications and Networking, May 200

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Personal area technologies for internetworked services

    Get PDF

    MIMO-OFDM Based Energy Harvesting Cooperative Communications Using Coalitional Game Algorithm

    Get PDF
    This document is the Accepted Manuscript version. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this paper, we consider the problem of cooperative communication between relays and base station in an advanced MIMO-OFDM framework, under the assumption that the relays are supplied by electric power drawn from energy harvesting (EH) sources. In particular, we focus on the relay selection, with the goal to guarantee the required performance in terms of capacity. In order to maximize the data throughput under the EH constraint, we model the transmission scheme as a non-transferable coalition formation game, with characteristic function based on an approximated capacity expression. Then, we introduce a powerful mathematical tool inherent to coalitional game theory, namely: the Shapley value (Sv) to provide a reliable solution concept to the game. The selected relays will form a virtual dynamically-configuredMIMO network that is able to transmit data to destination using efficient space-time coding techniques. Numerical results, obtained by simulating the EH-powered cooperativeMIMO-OFDMtransmission with Algebraic Space-Time Coding (ASTC), prove that the proposed coalitional game-based relay selection allows to achieve performance very close to that obtained by the same system operated by guaranteed power supply. The proposed methodology is finally compared with some recent related state-of-the-art techniques showing clear advantages in terms of link performance and goodput.Peer reviewe

    Non-cooperative Feedback Rate Control Game for Channel State Information in Wireless Networks

    Full text link
    It has been well recognized that channel state information (CSI) feedback is of great importance for dowlink transmissions of closed-loop wireless networks. However, the existing work typically researched the CSI feedback problem for each individual mobile station (MS), and thus, cannot efficiently model the interactions among self-interested mobile users in the network level. To this end, in this paper, we propose an alternative approach to investigate the CSI feedback rate control problem in the analytical setting of a game theoretic framework, in which a multiple-antenna base station (BS) communicates with a number of co-channel MSs through linear precoder. Specifically, we first present a non-cooperative feedback-rate control game (NFC), in which each MS selects the feedback rate to maximize its performance in a distributed way. To improve efficiency from a social optimum point of view, we then introduce pricing, called the non-cooperative feedback-rate control game with price (NFCP). The game utility is defined as the performance gain by CSI feedback minus the price as a linear function of the CSI feedback rate. The existence of the Nash equilibrium of such games is investigated, and two types of feedback protocols (FDMA and CSMA) are studied. Simulation results show that by adjusting the pricing factor, the distributed NFCP game results in close optimal performance compared with that of the centralized scheme.Comment: 26 pages, 10 figures; IEEE Journal on Selected Areas in Communications, special issue on Game Theory in Wireless Communications, 201
    corecore