160 research outputs found

    Non-Orthogonal Multiple Access for Hybrid VLC-RF Networks with Imperfect Channel State Information

    Get PDF
    The present contribution proposes a general framework for the energy efficiency analysis of a hybrid visible light communication (VLC) and Radio Frequency (RF) wireless system, in which both VLC and RF subsystems utilize nonorthogonal multiple access (NOMA) technology. The proposed framework is based on realistic communication scenarios as it takes into account the mobility of users, and assumes imperfect channel-state information (CSI). In this context, tractable closed-form expressions are derived for the corresponding average sum rate of NOMA-VLC and its orthogonal frequency division multiple access (OFDMA)-VLC counterparts. It is shown extensively that incurred CSI errors have a considerable impact on the average energy efficiency of both NOMA-VLC and OFDMAVLC systems and hence, they should not be neglected in practical designs and deployments. Interestingly, we further demonstrate that the average energy efficiency of the hybrid NOMA-VLCRF system outperforms NOMA-VLC system under imperfect CSI. Respective computer simulations corroborate the derived analytic results and interesting theoretical and practical insights are provided, which will be useful in the effective design and deployment of conventional VLC and hybrid VLC-RF systems

    Beamforming Techniques for Non-Orthogonal Multiple Access in 5G Cellular Networks

    Full text link
    In this paper, we develop various beamforming techniques for downlink transmission for multiple-input single-output (MISO) non-orthogonal multiple access (NOMA) systems. First, a beamforming approach with perfect channel state information (CSI) is investigated to provide the required quality of service (QoS) for all users. Taylor series approximation and semidefinite relaxation (SDR) techniques are employed to reformulate the original non-convex power minimization problem to a tractable one. Further, a fairness-based beamforming approach is proposed through a max-min formulation to maintain fairness between users. Next, we consider a robust scheme by incorporating channel uncertainties, where the transmit power is minimized while satisfying the outage probability requirement at each user. Through exploiting the SDR approach, the original non-convex problem is reformulated in a linear matrix inequality (LMI) form to obtain the optimal solution. Numerical results demonstrate that the robust scheme can achieve better performance compared to the non-robust scheme in terms of the rate satisfaction ratio. Further, simulation results confirm that NOMA consumes a little over half transmit power needed by OMA for the same data rate requirements. Hence, NOMA has the potential to significantly improve the system performance in terms of transmit power consumption in future 5G networks and beyond.Comment: accepted to publish in IEEE Transactions on Vehicular Technolog

    Secure Satellite Communication Systems Design with Individual Secrecy Rate Constraints

    Full text link
    In this paper, we study multibeam satellite secure communication through physical (PHY) layer security techniques, i.e., joint power control and beamforming. By first assuming that the Channel State Information (CSI) is available and the beamforming weights are fixed, a novel secure satellite system design is investigated to minimize the transmit power with individual secrecy rate constraints. An iterative algorithm is proposed to obtain an optimized power allocation strategy. Moreover, sub-optimal beamforming weights are obtained by completely eliminating the co-channel interference and nulling the eavesdroppers' signal simultaneously. In order to obtain jointly optimized power allocation and beamforming strategy in some practical cases, e.g., with certain estimation errors of the CSI, we further evaluate the impact of the eavesdropper's CSI on the secure multibeam satellite system design. The convergence of the iterative algorithm is proven under justifiable assumptions. The performance is evaluated by taking into account the impact of the number of antenna elements, number of beams, individual secrecy rate requirement, and CSI. The proposed novel secure multibeam satellite system design can achieve optimized power allocation to ensure the minimum individual secrecy rate requirement. The results show that the joint beamforming scheme is more favorable than fixed beamforming scheme, especially in the cases of a larger number of satellite antenna elements and higher secrecy rate requirement. Finally, we compare the results under the current satellite air-interface in DVB-S2 and the results under Gaussian inputs.Comment: 34 pages, 10 figures, 1 table, submitted to "Transactions on Information Forensics and Security
    • …
    corecore