1,774 research outputs found

    Understanding the thermal implications of multicore architectures

    Get PDF
    Multicore architectures are becoming the main design paradigm for current and future processors. The main reason is that multicore designs provide an effective way of overcoming instruction-level parallelism (ILP) limitations by exploiting thread-level parallelism (TLP). In addition, it is a power and complexity-effective way of taking advantage of the huge number of transistors that can be integrated on a chip. On the other hand, today's higher than ever power densities have made temperature one of the main limitations of microprocessor evolution. Thermal management in multicore architectures is a fairly new area. Some works have addressed dynamic thermal management in bi/quad-core architectures. This work provides insight and explores different alternatives for thermal management in multicore architectures with 16 cores. Schemes employing both energy reduction and activity migration are explored and improvements for thread migration schemes are proposed.Peer ReviewedPostprint (published version

    Modeling DVFS and Power-Gating Actuators for Cycle-Accurate NoC-Based Simulators

    Get PDF
    Networks-on-chip (NoCs) are a widely recognized viable interconnection paradigm to support the multi-core revolution. One of the major design issues of multicore architectures is still the power, which can no longer be considered mainly due to the cores, since the NoC contribution to the overall energy budget is relevant. To face both static and dynamic power while balancing NoC performance, different actuators have been exploited in literature, mainly dynamic voltage frequency scaling (DVFS) and power gating. Typically, simulation-based tools are employed to explore the huge design space by adopting simplified models of the components. As a consequence, the majority of state-of-the-art on NoC power-performance optimization do not accurately consider timing and power overheads of actuators, or (even worse) do not consider them at all, with the risk of overestimating the benefits of the proposed methodologies. This article presents a simulation framework for power-performance analysis of multicore architectures with specific focus on the NoC. It integrates accurate power gating and DVFS models encompassing also their timing and power overheads. The value added of our proposal is manyfold: (i) DVFS and power gating actuators are modeled starting from SPICE-level simulations; (ii) such models have been integrated in the simulation environment; (iii) policy analysis support is plugged into the framework to enable assessment of different policies; (iv) a flexible GALS (globally asynchronous locally synchronous) support is provided, covering both handshake and FIFO re-synchronization schemas. To demonstrate both the flexibility and extensibility of our proposal, two simple policies exploiting the modeled actuators are discussed in the article

    Fuzzy logic based energy and throughput aware design space exploration for MPSoCs

    Get PDF
    Multicore architectures were introduced to mitigate the issue of increase in power dissipation with clock frequency. Introduction of deeper pipelines, speculative threading etc. for single core systems were not able to bring much increase in performance as compared to their associated power overhead. However for multicore architectures performance scaling with number of cores has always been a challenge. The Amdahl's law shows that the theoretical maximum speedup of a multicore architecture is not even close to the multiple of number of cores. With less amount of code in parallel having more number of cores for an application might just contribute in greater power dissipation instead of bringing some performance advantage. Therefore there is a need of an adaptive multicore architecture that can be tailored for the application in use for higher energy efficiency. In this paper a fuzzy logic based design space exploration technique is presented that is targeted to optimize a multicore architecture according to the workload requirements in order to achieve optimum balance between throughput and energy of the system

    Evaluation of temperature-performance trade-offs in wireless network-on-chip architectures

    Get PDF
    Continued scaling of device geometries according to Moore\u27s Law is enabling complete end-user systems on a single chip. Massive multicore processors are enablers for many information and communication technology (ICT) innovations spanning various domains, including healthcare, defense, and entertainment. In the design of high-performance massive multicore chips, power and heat are dominant constraints. Temperature hotspots witnessed in multicore systems exacerbate the problem of reliability in deep submicron technologies. Hence, there is a great need to explore holistic power and thermal optimization and management strategies for the massive multicore chips. High power consumption not only raises chip temperature and cooling cost, but also decreases chip reliability and performance. Thus, addressing thermal concerns at different stages of the design and operation is critical to the success of future generation systems. The performance of a multicore chip is also influenced by its overall communication infrastructure, which is predominantly a Network-on-Chip (NoC). The existing method of implementing a NoC with planar metal interconnects is deficient due to high latency, significant power consumption, and temperature hotspots arising out of long, multi-hop wireline links used in data exchange. On-chip wireless networks are envisioned as an enabling technology to design low power and high bandwidth massive multicore architectures. However, optimizing wireless NoCs for best performance does not necessarily guarantee a thermally optimal interconnection architecture. The wireless links being highly efficient attract very high traffic densities which in turn results in temperature hotspots. Therefore, while the wireless links result in better performance and energy-efficiency, they can also cause temperature hotspots and undermine the reliability of the system. Consequently, the location and utilization of the wireless links is an important factor in thermal optimization of high performance wireless Networks-on-Chip. Architectural innovation in conjunction with suitable power and thermal management strategies is the key for designing high performance yet energy-efficient massive multicore chips. This work contributes to exploration of various the design methodologies for establishing wireless NoC architectures that achieve the best trade-offs between temperature, performance and energy-efficiency. It further demonstrates that incorporating Dynamic Thermal Management (DTM) on a multicore chip designed with such temperature and performance optimized Wireless Network-on-Chip architectures improves thermal profile while simultaneously providing lower latency and reduced network energy dissipation compared to its conventional counterparts

    Power Management Techniques for Data Centers: A Survey

    Full text link
    With growing use of internet and exponential growth in amount of data to be stored and processed (known as 'big data'), the size of data centers has greatly increased. This, however, has resulted in significant increase in the power consumption of the data centers. For this reason, managing power consumption of data centers has become essential. In this paper, we highlight the need of achieving energy efficiency in data centers and survey several recent architectural techniques designed for power management of data centers. We also present a classification of these techniques based on their characteristics. This paper aims to provide insights into the techniques for improving energy efficiency of data centers and encourage the designers to invent novel solutions for managing the large power dissipation of data centers.Comment: Keywords: Data Centers, Power Management, Low-power Design, Energy Efficiency, Green Computing, DVFS, Server Consolidatio

    REPP-H: runtime estimation of power and performance on heterogeneous data centers

    Get PDF
    Modern data centers increasingly demand improved performance with minimal power consumption. Managing the power and performance requirements of the applications is challenging because these data centers, incidentally or intentionally, have to deal with server architecture heterogeneity [19], [22]. One critical challenge that data centers have to face is how to manage system power and performance given the different application behavior across multiple different architectures.This work has been supported by the EU FP7 program (Mont-Blanc 2, ICT-610402), by the Ministerio de Economia (CAP-VII, TIN2015-65316-P), and the Generalitat de Catalunya (MPEXPAR, 2014-SGR-1051). The material herein is based in part upon work supported by the US NSF, grant numbers ACI-1535232 and CNS-1305220.Peer ReviewedPostprint (author's final draft

    Temperature Evaluation of NoC Architectures and Dynamically Reconfigurable NoC

    Get PDF
    Advancements in the field of chip fabrication led to the integration of a large number of transistors in a small area, giving rise to the multi–core processor era. Massive multi–core processors facilitate innovation and research in the field of healthcare, defense, entertainment, meteorology and many others. Reduction in chip area and increase in the number of on–chip cores is accompanied by power and temperature issues. In high performance multi–core chips, power and heat are predominant constraints. High performance massive multicore systems suffer from thermal hotspots, exacerbating the problem of reliability in deep submicron technologies. High power consumption not only increases the chip temperature but also jeopardizes the integrity of the system. Hence, there is a need to explore holistic power and thermal optimization and management strategies for massive on–chip multi–core environments. In multi–core environments, the communication fabric plays a major role in deciding the efficiency of the system. In multi–core processor chips this communication infrastructure is predominantly a Network–on–Chip (NoC). Tradition NoC designs incorporate planar interconnects as a result these NoCs have long, multi–hop wireline links for data exchange. Due to the presence of multi–hop planar links such NoC architectures fall prey to high latency, significant power dissipation and temperature hotspots. Networks inspired from nature are envisioned as an enabling technology to achieve highly efficient and low power NoC designs. Adopting wireless technology in such architectures enhance their performance. Placement of wireless interconnects (WIs) alters the behavior of the network and hence a random deployment of WIs may not result in a thermally optimal solution. In such scenarios, the WIs being highly efficient would attract high traffic densities resulting in thermal hotspots. Hence, the location and utilization of the wireless links is a key factor in obtaining a thermal optimal highly efficient Network–on–chip. Optimization of the NoC framework alone is incapable of addressing the effects due to the runtime dynamics of the system. Minimal paths solely optimized for performance in the network may lead to excessive utilization of certain NoC components leading to thermal hotspots. Hence, architectural innovation in conjunction with suitable power and thermal management strategies is the key for designing high performance and energy–efficient multicore systems. This work contributes at exploring various wired and wireless NoC architectures that achieve best trade–offs between temperature, performance and energy–efficiency. It further proposes an adaptive routing scheme which factors in the thermal profile of the chip. The proposed routing mechanism dynamically reacts to the thermal profile of the chip and takes measures to avoid thermal hotspots, achieving a thermally efficient dynamically reconfigurable network on chip architecture
    • …
    corecore