468 research outputs found

    Visualizing the outcome of dynamic analysis of Android malware with VizMal

    Get PDF
    Malware detection techniques based on signature extraction require security analysts to manually inspect samples to find evidences of malicious behavior. This time-consuming task received little attention by researchers and practitioners, as most of the effort is on the identification as malware or non-malware of an entire sample. There are no tools for supporting the analyst in identifying when the malicious behavior occurs, given a sample. In this paper we propose VizMal, a tool able to visualize the execution traces of Android applications and to highlight which portions of the traces correspond to a potentially malicious behavior. The aim of VizMal is twofold: assisting the malware analyst during the inspection of an application and pushing the research community to organize and focus its effort on the malicious behavior localization. VizMal is able to discern if the application behavior during each second of execution are legitimate or malicious and to show this information in a simple and understandable way. We validate VizMal experimentally and by means of a user study: the results are promising and confirm that the tool can be useful

    Rich media content adaptation in e-learning systems

    Get PDF
    The wide use of e-technologies represents a great opportunity for underserved segments of the population, especially with the aim of reintegrating excluded individuals back into society through education. This is particularly true for people with different types of disabilities who may have difficulties while attending traditional on-site learning programs that are typically based on printed learning resources. The creation and provision of accessible e-learning contents may therefore become a key factor in enabling people with different access needs to enjoy quality learning experiences and services. Another e-learning challenge is represented by m-learning (which stands for mobile learning), which is emerging as a consequence of mobile terminals diffusion and provides the opportunity to browse didactical materials everywhere, outside places that are traditionally devoted to education. Both such situations share the need to access materials in limited conditions and collide with the growing use of rich media in didactical contents, which are designed to be enjoyed without any restriction. Nowadays, Web-based teaching makes great use of multimedia technologies, ranging from Flash animations to prerecorded video-lectures. Rich media in e-learning can offer significant potential in enhancing the learning environment, through helping to increase access to education, enhance the learning experience and support multiple learning styles. Moreover, they can often be used to improve the structure of Web-based courses. These highly variegated and structured contents may significantly improve the quality and the effectiveness of educational activities for learners. For example, rich media contents allow us to describe complex concepts and process flows. Audio and video elements may be utilized to add a “human touch” to distance-learning courses. Finally, real lectures may be recorded and distributed to integrate or enrich on line materials. A confirmation of the advantages of these approaches can be seen in the exponential growth of video-lecture availability on the net, due to the ease of recording and delivering activities which take place in a traditional classroom. Furthermore, the wide use of assistive technologies for learners with disabilities injects new life into e-learning systems. E-learning allows distance and flexible educational activities, thus helping disabled learners to access resources which would otherwise present significant barriers for them. For instance, students with visual impairments have difficulties in reading traditional visual materials, deaf learners have trouble in following traditional (spoken) lectures, people with motion disabilities have problems in attending on-site programs. As already mentioned, the use of wireless technologies and pervasive computing may really enhance the educational learner experience by offering mobile e-learning services that can be accessed by handheld devices. This new paradigm of educational content distribution maximizes the benefits for learners since it enables users to overcome constraints imposed by the surrounding environment. While certainly helpful for users without disabilities, we believe that the use of newmobile technologies may also become a fundamental tool for impaired learners, since it frees them from sitting in front of a PC. In this way, educational activities can be enjoyed by all the users, without hindrance, thus increasing the social inclusion of non-typical learners. While the provision of fully accessible and portable video-lectures may be extremely useful for students, it is widely recognized that structuring and managing rich media contents for mobile learning services are complex and expensive tasks. Indeed, major difficulties originate from the basic need to provide a textual equivalent for each media resource composing a rich media Learning Object (LO). Moreover, tests need to be carried out to establish whether a given LO is fully accessible to all kinds of learners. Unfortunately, both these tasks are truly time-consuming processes, depending on the type of contents the teacher is writing and on the authoring tool he/she is using. Due to these difficulties, online LOs are often distributed as partially accessible or totally inaccessible content. Bearing this in mind, this thesis aims to discuss the key issues of a system we have developed to deliver accessible, customized or nomadic learning experiences to learners with different access needs and skills. To reduce the risk of excluding users with particular access capabilities, our system exploits Learning Objects (LOs) which are dynamically adapted and transcoded based on the specific needs of non-typical users and on the barriers that they can encounter in the environment. The basic idea is to dynamically adapt contents, by selecting them from a set of media resources packaged in SCORM-compliant LOs and stored in a self-adapting format. The system schedules and orchestrates a set of transcoding processes based on specific learner needs, so as to produce a customized LO that can be fully enjoyed by any (impaired or mobile) student

    Mixed Reality Browsers and Pedestrian Navigation in Augmented Cities

    Get PDF
    International audienceIn this paper, We use a declarative format for positional audio with synchronization between audio chunks using SMIL. This format has been specifically designed for the type of audio used in AR applications. The audio engine associated to this format is running on mobile platforms (iOS, Android). Our MRB browser called IXE use a format based on volunteered geographic information (OpenStreetMap) and OSM documents for IXE can be fully authored in side OSM editors like JOSM. This is in contrast with the other AR browsers like Layar, Juniao, Wikitude, which use a Point of Interest (POI) based format having no notion of ways. This introduces a fundamental difference and in some senses a duality relation between IXE and the other AR browsers. In IXE, Augmented Virtuality (AV) navigation along a route (composed of ways) is central and AR interaction with objects is delegated to associate 3D activities. In AR browsers, navigation along a route is delegated to associated map activities and AR interaction with objects is central. IXE supports multiple tracking technologies and therefore allows both indoor navigation in buildings and outdoor navigation at the level of sidewalks. A first android version of the IXE browser will be released at the end of 2013. Being based on volunteered geographic it will allow building accessible pedestrian networks in augmented cities

    Mixed Reality Browsers and Pedestrian Navigation in Augmented Cities

    No full text
    International audienceIn this paper, We use a declarative format for positional audio with synchronization between audio chunks using SMIL. This format has been specifically designed for the type of audio used in AR applications. The audio engine associated to this format is running on mobile platforms (iOS, Android). Our MRB browser called IXE use a format based on volunteered geographic information (OpenStreetMap) and OSM documents for IXE can be fully authored in side OSM editors like JOSM. This is in contrast with the other AR browsers like Layar, Juniao, Wikitude, which use a Point of Interest (POI) based format having no notion of ways. This introduces a fundamental difference and in some senses a duality relation between IXE and the other AR browsers. In IXE, Augmented Virtuality (AV) navigation along a route (composed of ways) is central and AR interaction with objects is delegated to associate 3D activities. In AR browsers, navigation along a route is delegated to associated map activities and AR interaction with objects is central. IXE supports multiple tracking technologies and therefore allows both indoor navigation in buildings and outdoor navigation at the level of sidewalks. A first android version of the IXE browser will be released at the end of 2013. Being based on volunteered geographic it will allow building accessible pedestrian networks in augmented cities

    Why do we digitize books instead of knowledge?

    Get PDF
    Besides text and images, contemporary e-books can include multimedia, interactivity, pronunciation information and text-to-speech ready content. The current EPUB 3 standard provides all the technical solutions necessary for designing and displaying highly functional and content rich e-books, but the implementation is impaired by the e-reader industry, publishers and distributors. Local and global book digitization has been an ongoing process for years, encompassing publications ranging from classical literature to current technical textbooks. Textual expression of knowledge is a remnant of the past but it is still dominant today, even though interactivity and video content are known to significantly enhance the learning process. However, multimedia and interactive content for e-books is not produced because it requires time, technical knowledge and specific tools. Within the current publishing system, authors are expected to produce and design all the content for books on their own, but because of the extreme content diversity, it is unrealistic to expect that they really possess such knowledge and skills. Better collaboration among authors, publishers, distributors, the professional community and the related industry is necessary for knowledge digitization to function
    • …
    corecore