24 research outputs found

    Monitoring permafrost environments with Synthetic Aperture Radar (SAR) sensors

    Get PDF
    Permafrost occupies approximately 24% of the exposed land area in the Northern Hemisphere. It is an important element of the cryosphere and has strong impacts on hydrology, biological processes, land surface energy budget, and infrastructure. For several decades, surface air temperatures in the high northern latitudes have warmed at approximately twice the global rate. Permafrost temperatures have increased in most regions since the early 1980s, the averaged warming north of 60ยฐN has been 1-2ยฐC. In-situ measurements are essential to understanding physical processes in permafrost terrain, but they have several limitations, ranging from difficulties in drilling to the representativeness of limited single point measurements. Remote sensing is urgently needed to supplement ground-based measurements and extend the point observations to a broader spatial domain. This thesis concentrates on the sub-arctic permafrost environment monitoring with SAR datasets. The study site is selected in a typical discontinuous permafrost region in the eastern Canadian sub-Arctic. Inuit communities in Nunavik and Nunatsiavut in the Canadian eastern sub-arctic are amongst the groups most affected by the impacts of climate change and permafrost degradation. Synthetic Aperture Radar (SAR) datasets have advantages for permafrost monitoring in the Arctic and sub-arctic regions because of its high resolution and independence of cloud cover and solar illumination. To date, permafrost environment monitoring methods and strategies with SAR datasets are still under development. The variability of active layer thickness is a direct indication of permafrost thermal state changes. The Differential SAR Interferometry (D-InSAR) technique is applied in the study site to derive ground deformation, which is introduced by the thawing/freezing depth of active layer and underlying permafrost. The D-InSAR technique has been used for the mapping of ground surface deformation over large areas by interpreting the phase difference between two signals acquired at different times as ground motion information. It shows the ability to detect freeze/thaw-related ground motion over permafrost regions. However, to date, accuracy and value assessments of D-InSAR applications have focused mostly on the continuous permafrost region where the vegetation is less developed and causes fewer complicating factors for the D-InSAR application, less attention is laid on the discontinuous permafrost terrain. In this thesis, the influencing factors and application conditions for D-InSAR in the discontinuous permafrost environment are evaluated by using X- band and L-band data. Then, benefit from by the high-temporal resolution of C-band Sentinel-1 time series, the seasonal displacement is derived from small baseline subsets (SBAS)-InSAR. Landforms are indicative of permafrost presence, with their changes inferring modifications to permafrost conditions. A permafrost landscape mapping method was developed which uses multi-temporal TerraSAR-X backscatter intensity and interferometric coherence information. The land cover map is generated through the combined use of object-based image analysis (OBIA) and classification and regression tree analysis (CART). An overall accuracy of 98% is achieved when classifying rock and water bodies, and an accuracy of 79% is achieved when discriminating between different vegetation types with one year of single-polarized acquisitions. This classification strategy can be transferred to other time-series SAR datasets, e.g., Sentinel-1, and other heterogeneous environments. One predominant change in the landscape tied to the thaw of permafrost is the dynamics of thermokarst lakes. Dynamics of thermokarst lakes are developed through their lateral extent and vertical depth changes. Due to different water depth, ice cover over shallow thermokarst ponds/lakes can freeze completely to the lake bed in winter, resulting in grounded ice; while ice cover over deep thermokarst ponds/lakes cannot, which have liquid water persisting under the ice cover all winter, resulting in floating ice. Winter ice cover regimes are related to water depths and ice thickness. In the lakes having floating ice, the liquid water induces additional heat in the remaining permafrost underneath and surroundings, which contributes to further intensified permafrost thawing. SAR datasets are utilized to detect winter ice cover regimes based on the character that liquid water has a remarkably high dielectric constant, whereas pure ice has a low value. Patterns in the spatial distribution of ice-cover regimes of thermokarst ponds in a typical discontinuous permafrost region are first revealed. Then, the correlations of these ice-cover regimes with the permafrost degradation states and thermokarst pond development in two historical phases (Sheldrake catchment in the year 1957 and 2009, Tasiapik Valley 1994 and 2010) were explored. The results indicate that the ice-cover regimes of thermokarst ponds are affected by soil texture, permafrost degradation stage and permafrost depth. Permafrost degradation is difficult to directly assess from the coverage area of floating-ice ponds and the percentage of all thermokarst ponds consisting of such floating-ice ponds in a single year. Continuous monitoring of ice-cover regimes and surface areas is recommended to elucidate the hydrological trajectory of the thermokarst process. Several operational monitoring methods have been developed in this thesis work. In the meanwhile, the spatial distribution of seasonal ground thaw subsidence, permafrost landscape, thermokarst ponds and their winter ice cover regimes are first revealed in the study area. The outcomes help understand the state and dynamics of permafrost environment.Der Permafrostboden bedeckt etwa 24% der exponierten Landflรคche in der nรถrdlichen Hemisphรคre. Es ist ein wichtiges Element der Kryosphรคre und hat starke Auswirkungen auf die Hydrologie, die biologischen Prozesse, das Energie-Budget der Landoberflรคche und die Infrastruktur. Seit mehreren Jahrzehnten erhรถhen sich die Oberflรคchenlufttemperaturen in den nรถrdlichen hohen Breitengraden etwa doppelt so stark wie die globale Rate. Die Temperaturen der Permafrostbรถden sind in den meisten Regionen seit den frรผhen 1980er Jahren gestiegen. Die durchschnittliche Erwรคrmung nรถrdlich von 60ยฐ N betrรคgt 1-2ยฐC. In-situ-Messungen sind essentiell fรผr das Verstรคndnis der physischen Prozesse im Permafrostgelรคnde. Es gibt jedoch mehrere Einschrรคnkungen, die von Schwierigkeiten beim Bohren bis hin zur Reprรคsentativitรคt begrenzter Einzelpunktmessungen reichen. Fernerkundung ist dringend benรถtigt, um bodenbasierte Messungen zu ergรคnzen und punktuelle Beobachtungen auf einen breiteren rรคumlichen Bereich auszudehnen. Diese Dissertation konzentriert sich auf die Umweltbeobachtung der subarktischen Permafrostbรถden mit SAR-Datensรคtzen. Das Untersuchungsgebiet wurde in einer typischen diskontinuierlichen Permafrostzone in der kanadischen รถstlichen Sub-Arktis ausgewรคhlt. Die Inuit-Gemeinschaften in den Regionen Nunavik und Nunatsiavut in der kanadischen รถstlichen Sub-Arktis gehรถren zu den Gruppen, die am stรคrksten von den Auswirkungen des Klimawandels und Permafrostdegradation betroffen sind. Synthetische Apertur Radar (SAR) Datensรคtze haben Vorteile fรผr das Permafrostmonitoring in den arktischen und subarktischen Regionen aufgrund der hohen Auflรถsung und der Unabhรคngigkeit von Wolkendeckung und Sonnenstrahlung. Bis heute sind die Methoden und Strategien mit SAR-Datensรคtzen fรผr Umweltbeobachtung der Permafrostbรถden noch in der Entwicklung. Die Variabilitรคt der Auftautiefe der aktiven Schicht ist eine direkte Indikation der Verรคnderung des thermischen Zustands der Permafrostbรถden. Die Differential-SAR-Interferometrie(D-Insar)-Technik wird im Untersuchungsgebiet zur Ableitung der Bodendeformation, die durch Auftau- / und Gefriertiefe der aktiven Schicht und des unterliegenden Permafrostbodens eingefรผhrt wird, eingesetzt. Die D-InSAR-Technik wurde fรผr Kartierung der Landoberflรคchendeformation รผber groรŸe Flรคchen verwendet, indem der Phasenunterschied zwischen zwei zu verschiedenen Zeitpunkten als Bodenbewegungsinformation erfassten Signalen interpretiert wurde. Es zeigt die Fรคhigkeit, tau- und gefrierprozessbedingte Bodenbewegungen รผber Permafrostregionen zu detektieren. Jedoch fokussiert sich die Genauigkeit und Wertschรคtzung der D-InSAR-Anwendung bis heute hauptsรคchlich auf kontinuierliche Permafrostregion, wo die Vegetation wenig entwickelt ist und weniger komplizierte Faktoren fรผr D-InSAR-Anwendung verursacht. Das diskontinuierliche Permafrostgelรคnde wurde nur weniger berรผcksichtigt. In dieser Dissertation wurden die Einflussfaktoren und Anwendungsbedingungen fรผr D-InSAR im diskontinuierlichen Permafrostgebiet mittels X-Band und L-Band Daten ausgewertet. Dann wurde die saisonale Verschiebung dank der hohen Auflรถsung der C-Band Sentinel-1 Zeitreihe von โ€žSmall Baseline Subsets (SBAS)-InSARโ€œ abgeleitet. Landformen weisen auf die Prรคsenz des Permafrosts hin, wobei deren Verรคnderungen auf die Modifikation der Permafrostbedingungen schlieรŸen. Eine Kartierungsmethode der Permafrostlandschaft wurde entwickelt, dabei wurde Multi-temporal TerraSAR-X Rรผckstreuungsintensitรคt und interferometrische Kohรคrenzinformationen verwendet. Die Landbedeckungskarte wurde durch kombinierte Anwendung objektbasierter Bildanalyse (OBIA) und Klassifikations- und Regressionsbaum Analyse (CART) generiert. Eine Gesamtgenauigkeit in Hรถhe von 98% wurde bei Klassifikation der Gesteine und Wasserkรถrper erreicht. Bei Unterscheidung zwischen verschiedenen Vegetationstypen mit einem Jahr einzelpolarisierte Akquisitionen wurde eine Genauigkeit von 79% erreicht. Diese Klassifikationsstrategie kann auf andere Zeitreihen der SAR-Datensรคtzen, z.B. Sentinel-1, und auch anderen heterogenen Umwelten รผbertragen werden. Eine vorherrschende Verรคnderung in der Landschaft, die mit dem Auftauen des Permafrosts verbunden ist, ist die Dynamik der Thermokarstseen. Die Dynamik der Thermokarstseen ist durch Verรคnderungen der seitlichen Ausdehnung und der vertikalen Tiefe entwickelt. Aufgrund der unterschiedlichen Wassertiefen kann die Eisdecke รผber den flachen Thermokarstteichen/-seen im Winter bis auf den Wasserboden vollstรคndig gefroren sein, was zum geerdeten Eis fรผhrt, wรคhrend die Eisdecke รผber den tiefen Thermokarstteichen/-seen es nicht kann. In den tiefen Thermokarstteichen/-seen bleibt den ganzen Winter flรผssiges Wasser unter der Eisdecke bestehen, was zum Treibeis fรผhrt. Das Wintereisdeckenregime bezieht sich auf die Wassertiefe und die Eisdicke. In den Seen mit Treibeis leitet das flรผssige Wasser zusรคtzliche Wรคrme in den restlichen Permafrost darunter oder in der Umgebung, was zur weiteren Verstรคrkung des Permafrostauftauen beitrรคgt. Basiert auf den Charakter, dass das flรผssige Wasser eine bemerkenswert hohe Dielektrizitรคtskonstante besitzt, wรคhrend reines Eis einen niedrigen Wert hat, wurden die SAR Datensรคtzen zur Erkennung des Wintereisdeckenregimes verwendet. Zunรคchst wurden Schemen in der rรคumlichen Verteilung der Eisdeckenregimes der Thermokarstteiche in einer typischen diskontinuierlichen Permafrostregion abgeleitet. Dann wurden die Zusammenhรคnge dieser Eisdeckenregimes mit dem Degradationszustand des Permafrosts und der Entwicklung der Thermokarstteiche in zwei historischen Phasen (Sheldrake Einzugsgebiet in 1957 und 2009, Tasiapik Tal in 1994 und 2010) erforscht. Die Ergebnisse deuten darauf, dass die Eisdeckenregimes der Thermokarstteiche von der Bodenart, dem Degradationszustand des Permafrosts und der Permafrosttiefe beeinflusst werden. Es ist schwer, die Permafrostdegradation in einem einzelnen Jahr direkt durch den Abdeckungsbereich der Treibeis-Teiche und die Prozentzahl aller aus solchen Treibeis-Teichen bestehenden Thermokarstteiche abzuschรคtzen. Ein kontinuierliches Monitoring der Eisdeckenregimes und -oberflรคchen ist empfehlenswert, um den hydrologischen Verlauf des Thermokarstprozesses zu erlรคutern. In dieser Dissertation wurden mehrere operativen Monitoringsmethoden entwickelt. In der Zwischenzeit wurden die rรคumliche Verteilung der saisonalen Bodentauabsenkung, die Permafrostlandschaft, die Thermokarstteiche und ihre Wintereisdeckenregimes erstmals in diesem Untersuchungsgebiet aufgedeckt. Die Ergebnisse tragen dazu bei, den Zustand und die Dynamik der Permafrostumwelt zu verstehen

    Monitoring permafrost environments with Synthetic Aperture Radar (SAR) sensors

    Get PDF
    Permafrost occupies approximately 24% of the exposed land area in the Northern Hemisphere. It is an important element of the cryosphere and has strong impacts on hydrology, biological processes, land surface energy budget, and infrastructure. For several decades, surface air temperatures in the high northern latitudes have warmed at approximately twice the global rate. Permafrost temperatures have increased in most regions since the early 1980s, the averaged warming north of 60ยฐN has been 1-2ยฐC. In-situ measurements are essential to understanding physical processes in permafrost terrain, but they have several limitations, ranging from difficulties in drilling to the representativeness of limited single point measurements. Remote sensing is urgently needed to supplement ground-based measurements and extend the point observations to a broader spatial domain. This thesis concentrates on the sub-arctic permafrost environment monitoring with SAR datasets. The study site is selected in a typical discontinuous permafrost region in the eastern Canadian sub-Arctic. Inuit communities in Nunavik and Nunatsiavut in the Canadian eastern sub-arctic are amongst the groups most affected by the impacts of climate change and permafrost degradation. Synthetic Aperture Radar (SAR) datasets have advantages for permafrost monitoring in the Arctic and sub-arctic regions because of its high resolution and independence of cloud cover and solar illumination. To date, permafrost environment monitoring methods and strategies with SAR datasets are still under development. The variability of active layer thickness is a direct indication of permafrost thermal state changes. The Differential SAR Interferometry (D-InSAR) technique is applied in the study site to derive ground deformation, which is introduced by the thawing/freezing depth of active layer and underlying permafrost. The D-InSAR technique has been used for the mapping of ground surface deformation over large areas by interpreting the phase difference between two signals acquired at different times as ground motion information. It shows the ability to detect freeze/thaw-related ground motion over permafrost regions. However, to date, accuracy and value assessments of D-InSAR applications have focused mostly on the continuous permafrost region where the vegetation is less developed and causes fewer complicating factors for the D-InSAR application, less attention is laid on the discontinuous permafrost terrain. In this thesis, the influencing factors and application conditions for D-InSAR in the discontinuous permafrost environment are evaluated by using X- band and L-band data. Then, benefit from by the high-temporal resolution of C-band Sentinel-1 time series, the seasonal displacement is derived from small baseline subsets (SBAS)-InSAR. Landforms are indicative of permafrost presence, with their changes inferring modifications to permafrost conditions. A permafrost landscape mapping method was developed which uses multi-temporal TerraSAR-X backscatter intensity and interferometric coherence information. The land cover map is generated through the combined use of object-based image analysis (OBIA) and classification and regression tree analysis (CART). An overall accuracy of 98% is achieved when classifying rock and water bodies, and an accuracy of 79% is achieved when discriminating between different vegetation types with one year of single-polarized acquisitions. This classification strategy can be transferred to other time-series SAR datasets, e.g., Sentinel-1, and other heterogeneous environments. One predominant change in the landscape tied to the thaw of permafrost is the dynamics of thermokarst lakes. Dynamics of thermokarst lakes are developed through their lateral extent and vertical depth changes. Due to different water depth, ice cover over shallow thermokarst ponds/lakes can freeze completely to the lake bed in winter, resulting in grounded ice; while ice cover over deep thermokarst ponds/lakes cannot, which have liquid water persisting under the ice cover all winter, resulting in floating ice. Winter ice cover regimes are related to water depths and ice thickness. In the lakes having floating ice, the liquid water induces additional heat in the remaining permafrost underneath and surroundings, which contributes to further intensified permafrost thawing. SAR datasets are utilized to detect winter ice cover regimes based on the character that liquid water has a remarkably high dielectric constant, whereas pure ice has a low value. Patterns in the spatial distribution of ice-cover regimes of thermokarst ponds in a typical discontinuous permafrost region are first revealed. Then, the correlations of these ice-cover regimes with the permafrost degradation states and thermokarst pond development in two historical phases (Sheldrake catchment in the year 1957 and 2009, Tasiapik Valley 1994 and 2010) were explored. The results indicate that the ice-cover regimes of thermokarst ponds are affected by soil texture, permafrost degradation stage and permafrost depth. Permafrost degradation is difficult to directly assess from the coverage area of floating-ice ponds and the percentage of all thermokarst ponds consisting of such floating-ice ponds in a single year. Continuous monitoring of ice-cover regimes and surface areas is recommended to elucidate the hydrological trajectory of the thermokarst process. Several operational monitoring methods have been developed in this thesis work. In the meanwhile, the spatial distribution of seasonal ground thaw subsidence, permafrost landscape, thermokarst ponds and their winter ice cover regimes are first revealed in the study area. The outcomes help understand the state and dynamics of permafrost environment.Der Permafrostboden bedeckt etwa 24% der exponierten Landflรคche in der nรถrdlichen Hemisphรคre. Es ist ein wichtiges Element der Kryosphรคre und hat starke Auswirkungen auf die Hydrologie, die biologischen Prozesse, das Energie-Budget der Landoberflรคche und die Infrastruktur. Seit mehreren Jahrzehnten erhรถhen sich die Oberflรคchenlufttemperaturen in den nรถrdlichen hohen Breitengraden etwa doppelt so stark wie die globale Rate. Die Temperaturen der Permafrostbรถden sind in den meisten Regionen seit den frรผhen 1980er Jahren gestiegen. Die durchschnittliche Erwรคrmung nรถrdlich von 60ยฐ N betrรคgt 1-2ยฐC. In-situ-Messungen sind essentiell fรผr das Verstรคndnis der physischen Prozesse im Permafrostgelรคnde. Es gibt jedoch mehrere Einschrรคnkungen, die von Schwierigkeiten beim Bohren bis hin zur Reprรคsentativitรคt begrenzter Einzelpunktmessungen reichen. Fernerkundung ist dringend benรถtigt, um bodenbasierte Messungen zu ergรคnzen und punktuelle Beobachtungen auf einen breiteren rรคumlichen Bereich auszudehnen. Diese Dissertation konzentriert sich auf die Umweltbeobachtung der subarktischen Permafrostbรถden mit SAR-Datensรคtzen. Das Untersuchungsgebiet wurde in einer typischen diskontinuierlichen Permafrostzone in der kanadischen รถstlichen Sub-Arktis ausgewรคhlt. Die Inuit-Gemeinschaften in den Regionen Nunavik und Nunatsiavut in der kanadischen รถstlichen Sub-Arktis gehรถren zu den Gruppen, die am stรคrksten von den Auswirkungen des Klimawandels und Permafrostdegradation betroffen sind. Synthetische Apertur Radar (SAR) Datensรคtze haben Vorteile fรผr das Permafrostmonitoring in den arktischen und subarktischen Regionen aufgrund der hohen Auflรถsung und der Unabhรคngigkeit von Wolkendeckung und Sonnenstrahlung. Bis heute sind die Methoden und Strategien mit SAR-Datensรคtzen fรผr Umweltbeobachtung der Permafrostbรถden noch in der Entwicklung. Die Variabilitรคt der Auftautiefe der aktiven Schicht ist eine direkte Indikation der Verรคnderung des thermischen Zustands der Permafrostbรถden. Die Differential-SAR-Interferometrie(D-Insar)-Technik wird im Untersuchungsgebiet zur Ableitung der Bodendeformation, die durch Auftau- / und Gefriertiefe der aktiven Schicht und des unterliegenden Permafrostbodens eingefรผhrt wird, eingesetzt. Die D-InSAR-Technik wurde fรผr Kartierung der Landoberflรคchendeformation รผber groรŸe Flรคchen verwendet, indem der Phasenunterschied zwischen zwei zu verschiedenen Zeitpunkten als Bodenbewegungsinformation erfassten Signalen interpretiert wurde. Es zeigt die Fรคhigkeit, tau- und gefrierprozessbedingte Bodenbewegungen รผber Permafrostregionen zu detektieren. Jedoch fokussiert sich die Genauigkeit und Wertschรคtzung der D-InSAR-Anwendung bis heute hauptsรคchlich auf kontinuierliche Permafrostregion, wo die Vegetation wenig entwickelt ist und weniger komplizierte Faktoren fรผr D-InSAR-Anwendung verursacht. Das diskontinuierliche Permafrostgelรคnde wurde nur weniger berรผcksichtigt. In dieser Dissertation wurden die Einflussfaktoren und Anwendungsbedingungen fรผr D-InSAR im diskontinuierlichen Permafrostgebiet mittels X-Band und L-Band Daten ausgewertet. Dann wurde die saisonale Verschiebung dank der hohen Auflรถsung der C-Band Sentinel-1 Zeitreihe von โ€žSmall Baseline Subsets (SBAS)-InSARโ€œ abgeleitet. Landformen weisen auf die Prรคsenz des Permafrosts hin, wobei deren Verรคnderungen auf die Modifikation der Permafrostbedingungen schlieรŸen. Eine Kartierungsmethode der Permafrostlandschaft wurde entwickelt, dabei wurde Multi-temporal TerraSAR-X Rรผckstreuungsintensitรคt und interferometrische Kohรคrenzinformationen verwendet. Die Landbedeckungskarte wurde durch kombinierte Anwendung objektbasierter Bildanalyse (OBIA) und Klassifikations- und Regressionsbaum Analyse (CART) generiert. Eine Gesamtgenauigkeit in Hรถhe von 98% wurde bei Klassifikation der Gesteine und Wasserkรถrper erreicht. Bei Unterscheidung zwischen verschiedenen Vegetationstypen mit einem Jahr einzelpolarisierte Akquisitionen wurde eine Genauigkeit von 79% erreicht. Diese Klassifikationsstrategie kann auf andere Zeitreihen der SAR-Datensรคtzen, z.B. Sentinel-1, und auch anderen heterogenen Umwelten รผbertragen werden. Eine vorherrschende Verรคnderung in der Landschaft, die mit dem Auftauen des Permafrosts verbunden ist, ist die Dynamik der Thermokarstseen. Die Dynamik der Thermokarstseen ist durch Verรคnderungen der seitlichen Ausdehnung und der vertikalen Tiefe entwickelt. Aufgrund der unterschiedlichen Wassertiefen kann die Eisdecke รผber den flachen Thermokarstteichen/-seen im Winter bis auf den Wasserboden vollstรคndig gefroren sein, was zum geerdeten Eis fรผhrt, wรคhrend die Eisdecke รผber den tiefen Thermokarstteichen/-seen es nicht kann. In den tiefen Thermokarstteichen/-seen bleibt den ganzen Winter flรผssiges Wasser unter der Eisdecke bestehen, was zum Treibeis fรผhrt. Das Wintereisdeckenregime bezieht sich auf die Wassertiefe und die Eisdicke. In den Seen mit Treibeis leitet das flรผssige Wasser zusรคtzliche Wรคrme in den restlichen Permafrost darunter oder in der Umgebung, was zur weiteren Verstรคrkung des Permafrostauftauen beitrรคgt. Basiert auf den Charakter, dass das flรผssige Wasser eine bemerkenswert hohe Dielektrizitรคtskonstante besitzt, wรคhrend reines Eis einen niedrigen Wert hat, wurden die SAR Datensรคtzen zur Erkennung des Wintereisdeckenregimes verwendet. Zunรคchst wurden Schemen in der rรคumlichen Verteilung der Eisdeckenregimes der Thermokarstteiche in einer typischen diskontinuierlichen Permafrostregion abgeleitet. Dann wurden die Zusammenhรคnge dieser Eisdeckenregimes mit dem Degradationszustand des Permafrosts und der Entwicklung der Thermokarstteiche in zwei historischen Phasen (Sheldrake Einzugsgebiet in 1957 und 2009, Tasiapik Tal in 1994 und 2010) erforscht. Die Ergebnisse deuten darauf, dass die Eisdeckenregimes der Thermokarstteiche von der Bodenart, dem Degradationszustand des Permafrosts und der Permafrosttiefe beeinflusst werden. Es ist schwer, die Permafrostdegradation in einem einzelnen Jahr direkt durch den Abdeckungsbereich der Treibeis-Teiche und die Prozentzahl aller aus solchen Treibeis-Teichen bestehenden Thermokarstteiche abzuschรคtzen. Ein kontinuierliches Monitoring der Eisdeckenregimes und -oberflรคchen ist empfehlenswert, um den hydrologischen Verlauf des Thermokarstprozesses zu erlรคutern. In dieser Dissertation wurden mehrere operativen Monitoringsmethoden entwickelt. In der Zwischenzeit wurden die rรคumliche Verteilung der saisonalen Bodentauabsenkung, die Permafrostlandschaft, die Thermokarstteiche und ihre Wintereisdeckenregimes erstmals in diesem Untersuchungsgebiet aufgedeckt. Die Ergebnisse tragen dazu bei, den Zustand und die Dynamik der Permafrostumwelt zu verstehen

    Ground Based SAR Interferometry: a Novel Tool for Geoscience

    Get PDF

    Advanced Geoscience Remote Sensing

    Get PDF
    Nowadays, advanced remote sensing technology plays tremendous roles to build a quantitative and comprehensive understanding of how the Earth system operates. The advanced remote sensing technology is also used widely to monitor and survey the natural disasters and man-made pollution. Besides, telecommunication is considered as precise advanced remote sensing technology tool. Indeed precise usages of remote sensing and telecommunication without a comprehensive understanding of mathematics and physics. This book has three parts (i) microwave remote sensing applications, (ii) nuclear, geophysics and telecommunication; and (iii) environment remote sensing investigations

    Ground-based synthetic aperture radar (GBSAR) interferometry for deformation monitoring

    Get PDF
    Ph. D ThesisGround-based synthetic aperture radar (GBSAR), together with interferometry, represents a powerful tool for deformation monitoring. GBSAR has inherent flexibility, allowing data to be collected with adjustable temporal resolutions through either continuous or discontinuous mode. The goal of this research is to develop a framework to effectively utilise GBSAR for deformation monitoring in both modes, with the emphasis on accuracy, robustness, and real-time capability. To achieve this goal, advanced Interferometric SAR (InSAR) processing algorithms have been proposed to address existing issues in conventional interferometry for GBSAR deformation monitoring. The proposed interferometric algorithms include a new non-local method for the accurate estimation of coherence and interferometric phase, a new approach to selecting coherent pixels with the aim of maximising the density of selected pixels and optimizing the reliability of time series analysis, and a rigorous model for the correction of atmospheric and repositioning errors. On the basis of these algorithms, two complete interferometric processing chains have been developed: one for continuous and the other for discontinuous GBSAR deformation monitoring. The continuous chain is able to process infinite incoming images in real time and extract the evolution of surface movements through temporally coherent pixels. The discontinuous chain integrates additional automatic coregistration of images and correction of repositioning errors between different campaigns. Successful deformation monitoring applications have been completed, including three continuous (a dune, a bridge, and a coastal cliff) and one discontinuous (a hillside), which have demonstrated the feasibility and effectiveness of the presented algorithms and chains for high-accuracy GBSAR interferometric measurement. Significant deformation signals were detected from the three continuous applications and no deformation from the discontinuous. The achieved results are justified quantitatively via a defined precision indicator for the time series estimation and validated qualitatively via a priori knowledge of these observing sites.China Scholarship Council (CSC), Newcastle Universit

    Land Surface Monitoring Based on Satellite Imagery

    Get PDF
    This book focuses attention on significant novel approaches developed to monitor land surface by exploiting satellite data in the infrared and visible ranges. Unlike in situ measurements, satellite data provide global coverage and higher temporal resolution, with very accurate retrievals of land parameters. This is fundamental in the study of climate change and global warming. The authors offer an overview of different methodologies to retrieve land surface parametersโ€” evapotranspiration, emissivity contrast and water deficit indices, land subsidence, leaf area index, vegetation height, and crop coefficientโ€”all of which play a significant role in the study of land cover, land use, monitoring of vegetation and soil water stress, as well as early warning and detection of forest ๏ฌres and drought

    ๊ฐ„์„ญ ๊ธด๋ฐ€๋„ ๋ชจ๋ธ ์—ฐ๊ตฌ์™€ ๋‹จ์ผ ๋ฐ ๋‹ค์ค‘ ํŽธํŒŒ SAR ์˜์ƒ์„ ํ™œ์šฉํ•œ ์ž์—ฐ ์žฌํ•ด ํƒ์ง€

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ์ง€๊ตฌํ™˜๊ฒฝ๊ณผํ•™๋ถ€, 2017. 8. ๊น€๋•์ง„.์ž์—ฐ ์žฌํ•ด์— ๋Œ€ํ•œ ๋น ๋ฅธ ๋Œ€์‘๊ณผ ๋ณต๊ตฌ๋ฅผ ์œ„ํ•ด์„œ๋Š” ํ”ผํ•ด ์ง€์—ญ์— ๋Œ€ํ•œ ํ‰๊ฐ€๊ฐ€ ์„ ํ–‰๋˜์–ด์•ผ ํ•˜๋ฉฐ, ๊ทธ๋Ÿฐ ์˜๋ฏธ๋กœ ํ”ผํ•ด ์ง€์—ญ์„ ํƒ์ง€ํ•˜๋Š” ๊ฒƒ์€ ๋งค์šฐ ์ค‘์š”ํ•˜๋‹ค. SAR ์‹œ์Šคํ…œ์€ ๊ธฐ์ƒ์  ์กฐ๊ฑด๊ณผ ์ฃผ์•ผ์— ๋ฌด๊ด€ํ•˜๊ฒŒ ์˜์ƒ์„ ํš๋“ํ•  ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ, ๋ณ€ํ™” ํ˜น์€ ํ”ผํ•ด ์ง€์—ญ์„ ํƒ์ง€ํ•  ์ˆ˜ ์žˆ๋Š” ํšจ์œจ์ ์ธ ๋ฐฉ๋ฒ•์ด๋ผ๊ณ  ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ๋˜ํ•œ SAR ์‹œ์Šคํ…œ์„ ํ†ตํ•˜์—ฌ ๊ณ„์‚ฐํ•  ์ˆ˜ ์žˆ๋Š” ๊ธด๋ฐ€๋„ (coherence)๋Š” ์ง€ํ‘œ์˜ ์‚ฐ๋ž€์ฒด์˜ ์›€์ง์ž„ ํ˜น์€ ์œ ์ „์  ์„ฑ์งˆ์— ๋ณ€ํ™”์— ๋งค์šฐ ๋ฏผ๊ฐํ•˜๊ฒŒ ๋ฐ˜์‘ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ํ”ผํ•ด๋ฅผ ํƒ์ง€ํ•˜๊ธฐ์— ์ ํ•ฉํ•˜๋‹ค๊ณ  ํ‰๊ฐ€๋˜์–ด ์™”๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ธด๋ฐ€๋„๋ฅผ ์ด์šฉํ•œ ์ž์—ฐ์žฌํ•ด์˜ ํ”ผํ•ด ํƒ์ง€์—๋Š” ์–ด๋ ค์›€์ด ์กด์žฌํ•  ์ˆ˜ ์žˆ๋‹ค. ์ฆ‰, ํƒ์ง€ํ•˜๊ณ ์ž ํ•˜๋Š” ์ž์—ฐ์žฌํ•ด๋กœ ์ธํ•œ ํ”ผํ•ด์™€ ๋น„, ๋ˆˆ, ๋ฐ”๋žŒ๊ณผ ๊ฐ™์€ ๊ธฐ์ƒํ˜„์ƒ, ํ˜น์€ ์‹์ƒ์˜ ์ž์—ฐ์ ์ธ ๋ณ€ํ™”๊ฐ€ ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์ด ๊ธด๋ฐ€๋„์—์„œ๋Š” ์œ ์‚ฌํ•˜๊ฒŒ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ์ด๊ฒƒ์€ ๋ ˆ์ด๋” ์‹ ํ˜ธ์˜ ๊ธด๋ฐ€๋„๊ฐ€ ๋ฏธ์„ธํ•œ ๋ณ€ํ™”์—๋„ ๋ฏผ๊ฐํ•˜๊ฒŒ ๋ฐ˜์‘ํ•˜๋Š” ํŠน์ง•์œผ๋กœ๋ถ€ํ„ฐ ๊ธฐ์ธํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ ์ž์—ฐ ํ˜„์ƒ์œผ๋กœ๋ถ€ํ„ฐ ๋ฐœ์ƒํ•˜๋Š” ๊ธด๋ฐ€๋„ ๊ฐ์†Œ ํ˜„์ƒ์€ ํ”ผํ•ด ํƒ์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์—์„œ ์˜คํƒ์ง€์œจ์„ ์ฆ๊ฐ€์‹œํ‚ค๋Š” ์›์ธ์ด ๋˜๋ฉฐ, ์ž์—ฐ ์žฌํ•ด์˜ ์˜ํ–ฅ๊ณผ ๋ถ„๋ฆฌํ•ด์•ผ ํ•  ํ•„์š”์„ฑ์ด ์žˆ๋‹ค. ๋˜ํ•œ ๋‹ค์–‘ํ•œ ์ง€ํ‘œ ํŠน์„ฑ์„ ๊ฐ€์ง€๋Š” ํ”ฝ์…€๋“ค์€ ์ž์—ฐ ํ˜„์ƒ์— ๋Œ€ํ•œ ๊ฐ๊ธฐ ๋‹ค๋ฅธ ๊ธด๋ฐ€๋„ ํŠน์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์ •ํ™•ํ•œ ํ”ผํ•ด ํƒ์ง€๋ฅผ ์œ„ํ•ด์„œ๋Š” ๊ฐ ํ”ฝ์…€๋“ค์—์„œ์˜ ๋…๋ฆฝ์ ์ธ ํ‰๊ฐ€๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ๊ธด๋ฐ€๋„๋ฅผ ๊ฒฐ์ •ํ•˜๋Š” ์š”์ธ๋“ค์ด ๋‹ค์–‘ํ•˜๊ณ  ๋ณตํ•ฉ์ ์œผ๋กœ ์ž‘์šฉํ•˜๊ธฐ ๋•Œ๋ฌธ์— ํ•ด์„์— ์–ด๋ ค์›€์ด ์žˆ๋‹ค๋Š” ์  ์—ญ์‹œ ๊ธด๋ฐ€๋„ ๊ธฐ๋ฐ˜ ํ”ผํ•ด ํƒ์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ํ•œ๊ณ„์ ์ด๋‹ค. ํŠนํžˆ ์‹์ƒ์ด ์กด์žฌํ•˜๋Š” ์ง€์—ญ์—์„œ์˜ ๊ธด๋ฐ€๋„์˜ ๋ณ€ํ™”๋Š” ๋”์šฑ ๋ณต์žกํ•˜๊ฒŒ ๋‚˜ํƒ€๋‚  ์ˆ˜ ์žˆ๋‹ค. ๊ทธ ์ด์œ ๋Š” ์œ ์ „์  ์„ฑ์งˆ์„ ์ง€๋‹ˆ๊ณ  ์žˆ๋Š” ์‚ฐ๋ž€์ฒด๋“ค์ด ์‹์ƒ์—์„œ๋Š” ์ˆ˜์ง์ ์œผ๋กœ ๋ถ„ํฌํ•˜๋ฉฐ, ํŒŒ์žฅ์ด ๊ธด ๋ ˆ์ด๋” ์‹ ํ˜ธ๊ฐ€ ์ด๋ฅผ ํˆฌ๊ณผํ•จ์— ๋”ฐ๋ผ ์‹์ƒ์˜ ์ƒ์ธต๋ถ€๋ถ€ํ„ฐ ํ•˜์ธต๋ถ€ ๋˜ํ•œ ์ง€ํ‘œ๋ฉด๊นŒ์ง€ ๋„๋‹ฌ๋˜์–ด ์‚ฐ๋ž€๋˜์–ด ๊ธด๋ฐ€๋„๋ฅผ ๊ฐ์†Œ์‹œํ‚ค๋Š” ์ฒด์  ๊ธด๋ฐ€๋„ ๊ฐ์†Œ ํ˜„์ƒ(volume decorrelation) ๋•Œ๋ฌธ์ด๋‹ค. ํš๋“ ์‹œ๊ฐ„์ด ๋™์ผํ•˜์ง€ ์•Š์€ ๋‘ ์žฅ์˜ SAR ์˜์ƒ์„ ์‚ฌ์šฉํ•˜๋Š” repeat-pass ๊ฐ„์„ญ๊ธฐ๋ฒ•์—์„œ๋Š” ๊ฐ ์‹์ƒ์˜ ๊ฐ ๋ถ€๋ถ„์—์„œ ๋ฐœ์ƒ๋˜๋Š” ๋ณ€ํ™” ์ •๋ณด(temporal decorrelation)๋„ ๋™์‹œ์— ๊ธฐ๋ก๋˜๊ธฐ ๋•Œ๋ฌธ์— ํ•ด์„์€ ๋”์šฑ ์–ด๋ ค์›Œ์ง„๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋‹ค์ค‘ ์‹œ๊ธฐ ๊ธด๋ฐ€๋„๋ฅผ ์ด์šฉํ•˜์—ฌ ์ž์—ฐ ํ˜„์ƒ์„ ํ•ด์„ ํ•  ์ˆ˜ ์žˆ๋Š” ๋ชจ๋ธ์„ ์ œ์ž‘ํ•˜๊ณ  ์ด๋ฅผ ๋ณ€ํ™” ํƒ์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ ํ™•์žฅํ•˜์—ฌ, ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ํ‰๊ฐ€ํ•˜๊ณ  ์ •๋ฐ€ํ•œ ํ”ผํ•ด ์ง€์—ญ์„ ์ถ”์ถœํ•˜๋Š” ๊ฒƒ์„ ๋ชฉ์ ์œผ๋กœ ํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•˜์—ฌ ์ฒซ ๋ฒˆ์งธ๋กœ๋Š” ๊ฐ„์„ญ ๊ธฐ๋ฒ•์—์„œ์˜ ์‹œ๊ฐ„ ์ฐจ์ด(temporal baseline)์ด ๊ธธ ๋•Œ, ๋‹ค์ค‘ ์‹œ๊ธฐ ๊ธด๋ฐ€๋„(multi-temporal coherence)๋ฅผ ํ•ด์„ํ•  ์ˆ˜ ์žˆ๋Š” ๋ชจ๋ธ์„ ์ œ์ž‘ํ•˜๋Š” ๊ฒƒ์„ ๋ชฉ์ ์œผ๋กœ ํ•˜์˜€๋‹ค. ๋‘ ๋ฒˆ์งธ๋กœ๋Š” ๋‹จ์ผ ํŽธํŒŒ์˜ ๋‹ค์ค‘ ์‹œ๊ธฐ SAR ์˜์ƒ์—์„œ ๊ด€์ธก๋˜๋Š” ๊ธด๋ฐ€๋„๋ฅผ ํ•ด์„ํ•˜๊ณ , ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ถ”์ถœํ•˜๋ฉฐ, ๊ฒฐ๊ณผ์ ์œผ๋กœ ํ”ผํ•ด๋ฅผ ํƒ์ง€ํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ๋ฒ•์„ ๊ธฐ์ˆ ํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ์„ธ ๋ฒˆ์งธ๋กœ๋Š” ๋‹ค์ค‘ํŽธํŒŒ์˜ ๋‹ค์ค‘ ์‹œ๊ธฐ SAR ์˜์ƒ์— ๋Œ€ํ•œ ํ•ด์„ ๋ฐฉ๋ฒ•์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•˜๋Š” ๊ฒƒ์„ ๋ชฉ์ ์œผ๋กœ ํ•˜์˜€๋‹ค. 2์žฅ์—์„œ๋Š” ๊ธด๋ฐ€๋„์˜ ์ธก์ •๊ณผ ๊ธด๋ฐ€๋„๋ฅผ ๊ฒฐ์ •ํ•˜๋Š” ๋Œ€ํ‘œ์  ์š”์ธ์— ๋Œ€ํ•˜์—ฌ ๋ถ„์„ํ•˜์˜€๊ณ  ์‹œ๊ณ„์—ด ๊ธด๋ฐ€๋„ ๊ฐ์†Œ ๋ชจ๋ธ์„ ์ˆ˜์‹ํ™”ํ•˜์˜€๋‹ค. ๊ธด๋ฐ€๋„ ์š”์ธ ์ค‘ ์ฒซ ๋ฒˆ์งธ๋Š” ์—ด์žก์Œ ๊ธด๋ฐ€๋„ ๊ฐ์†Œ(thermal decorrelation)๋กœ์„œ, ์—ด ์žก์Œ (thermal noise)๋กœ๋ถ€ํ„ฐ ๊ธฐ์ธ๋˜๋ฉฐ, ๊ฐ ์‚ฐ๋ž€์ฒด์˜ ์‹ ํ˜ธ๋Œ€ ์žก์Œ๋น„(signal-to-noise ratio)์™€ ๋ฐ€์ ‘ํ•œ ๊ด€๋ จ์ด ์žˆ๋‹ค. ๋‘ ๋ฒˆ์งธ๋Š” ๊ธฐํ•˜ํ•™์  ๋น„์ƒ๊ด€์„ฑ(geometric decorrelation)์œผ๋กœ, ๋‘ ์„ผ์„œ๊ฐ€ ๋‹ค๋ฅธ ์œ„์น˜์—์„œ ์‹ ํ˜ธ๋ฅผ ์†ก์ˆ˜์‹ ํ•  ๋•Œ ์ง€์ƒ์— ํˆฌ์˜๋˜๋Š” ํŒŒ์ˆ˜์˜ ์ŠคํŽ™ํŠธ๋Ÿผ์ด ์ด๋™ํ•จ์— ๋”ฐ๋ผ ๋ฐœ์ƒํ•œ๋‹ค. ์„ธ ๋ฒˆ์งธ ์š”์ธ์€ ์ผ๋ฐ˜์ ์œผ๋กœ ์ฒด์  ๋น„์ƒ๊ด€์„ฑ (volume decorrelation)์ด๋ผ ์–ธ๊ธ‰๋˜๋Š” ๊ฒƒ์œผ๋กœ ์ง€์ƒ์˜ ๋งค์งˆ ์•ˆ์— ์‚ฐ๋ž€์ฒด๊ฐ€ ๋žœ๋คํ•˜๊ฒŒ ๋ถ„ํฌํ•˜๊ณ  ์ „์žํŒŒ๊ฐ€ ์ด๋ฅผ ํˆฌ๊ณผํ•  ๋•Œ ๋ฐœ์ƒํ•˜๋Š” ์œ„์ƒ์ฐจ์ด์— ์˜ํ•˜์—ฌ ๋ฐœ์ƒ๋œ๋‹ค. ์ฒด์  ๋น„์ƒ๊ด€์„ฑ์€ ์‹์ƒ์—์„œ ์ฃผ๋กœ ๊ด€์ฐฐ๋˜๋ฉฐ, ์ด๋ฅผ ์„ค๋ช…ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ RVoG ๋ชจ๋ธ์ด ์ œ์•ˆ๋˜๊ธฐ๋„ ํ•˜์˜€๋‹ค. RVoG ๋ชจ๋ธ์€ ์‹์ƒ์˜ ์žŽ์„ ํฌํ•จํ•˜๋Š” ์ฒด์  ๋ ˆ์ด์–ด์™€ ์‹์ƒ ํ•˜๋ถ€์˜ ์ง€ํ‘œ ๋ ˆ์ด์–ด๋ฅผ ํฌํ•จํ•˜๋Š” ๋ชจ๋ธ๋กœ์„œ, ๋‘ ๋ ˆ์ด์–ด์—์„œ ๊ฒฐ์ •๋˜๋Š” ๊ฐ„์„ญ๊ธฐ๋ฒ•์˜ ์œ„์ƒ ๋ฐ ๊ธด๋ฐ€๋„๋ฅผ ์„ค๋ช…ํ•œ๋‹ค. ๋งˆ์ง€๋ง‰ ์š”์ธ์€ ๋‘ ์˜์ƒ ์‚ฌ์ด์— ์‚ฐ๋ž€์ฒด๊ฐ€ ๋ณ€ํ™”ํ•  ๋•Œ ๋ฐœ์ƒํ•˜๋Š” ์‹œ๊ฐ„ ๋น„์ƒ๊ด€์„ฑ(temporal decorrelation)์ด๋‹ค. ํ”ฝ์…€ ์•ˆ์˜ ์‚ฐ๋ž€์ฒด๊ฐ€ ๋น„๊ท ์งˆํ•˜๊ฒŒ ์ด๋™ํ•˜๊ฑฐ๋‚˜, ์œ ์ „์ฒด์˜ ์„ฑ์งˆ์ด ๋ณ€ํ™”ํ•  ๊ฒฝ์šฐ ๋ฐœ์ƒํ•œ๋‹ค. ์ผ๋ฐ˜์ ์ธ repeat-pass ๊ฐ„์„ญ๊ธฐ๋ฒ•์˜ ๊ฒฝ์šฐ ์‹œ๊ฐ„ ๋น„์ƒ๊ด€์„ฑ์ด ๋งค์šฐ ์šฐ์„ธํ•˜๊ฒŒ ๋‚˜ํƒ€๋‚˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ์œผ๋ฉฐ, ์‹์ƒ์˜ ๊ฒฝ์šฐ ์ฒด์  ๋น„์ƒ๊ด€์„ฑ๊ณผ ์‹œ๊ฐ„ ๋น„์ƒ๊ด€์„ฑ์ด ๋™์‹œ์— ์šฐ์„ธํ•˜๊ฒŒ ๋‚˜ํƒ€๋‚œ๋‹ค. ์‹์ƒ์—์„œ ๊ด€์ฐฐ๋˜๋Š” ์ฒด์  ๋น„์ƒ๊ด€์„ฑ๊ณผ ์‹œ๊ฐ„ ๋น„์ƒ๊ด€์„ฑ์„ ๋™์‹œ์— ์„ค๋ช…ํ•˜๋Š” RMoG ๋ชจ๋ธ์ด ์ œ์•ˆ๋œ ๋ฐ” ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ƒ๋Œ€์ ์œผ๋กœ ๊ธด ์‹œ๊ฐ„ ์ฐจ์ด๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” repeat-pass ๊ฐ„์„ญ๊ธฐ๋ฒ•์—์„œ ๊ด€์ธก๋˜๋Š” ๊ธด๋ฐ€๋„ ๋ชจ๋ธ์„ ๊ณ ์•ˆํ•˜์˜€๋‹ค. ์‹œ๊ฐ„ ๋น„์ƒ๊ด€์„ฑ์„ ๋‹ค๋ฃจ๋Š” RMoG ๋ชจ๋ธ์€ ๋‘ ์˜์ƒ์˜ ์‹œ๊ฐ„ ์ฐจ์ด๊ฐ€ ํฌ์ง€ ์•Š์„ ๊ฒฝ์šฐ, ์‚ฐ๋ž€์ฒด์˜ ์ด๋™์ด ์‹œ๊ฐ„ ๋น„์ƒ๊ด€์„ฑ์„ ๋ฐœ์ƒ์‹œํ‚ค๋Š” ์ฃผ๋œ ์š”์ธ์ด๋ผ๋Š” ๊ฐ€์ •ํ•˜์— ์ œ์ž‘๋˜์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ผ๋ฐ˜์ ์ธ ์ธ๊ณต์œ„์„ฑ SAR๋Š” ์ˆ˜ ์ผ ์ด์ƒ์˜ ์‹œ๊ฐ„ ์ฐจ์ด๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์œผ๋ฉฐ, ๋‹ค์ค‘ ์‹œ๊ธฐ์˜ SAR ์˜์ƒ์„ ๋‹ค๋ฃฐ ๊ฒฝ์šฐ, ๊ฐ๊ฐ์˜ ์‹œ๊ฐ„ ์ฐจ์ด๋Š” ์ƒ์ดํ•˜๊ฒŒ ๋‚˜ํƒ€๋‚œ๋‹ค. ์ด ๊ฒฝ์šฐ ์‹œ๊ฐ„ ๋น„์ƒ๊ด€์„ฑ์„ ๋ฐœ์ƒ์‹œํ‚ค๋Š” ์š”์ธ์„ ์‚ฐ๋ž€์ฒด์˜ ์ด๋™๋งŒ์œผ๋กœ ์„ค๋ช…ํ•˜๋Š” ๊ธฐ์—๋Š” ์–ด๋ ค์›€์ด ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ ๋ณธ ์—ฐ๊ตฌ์—์„œ ๊ณ ์•ˆ๋œ ๋ชจ๋ธ์€ ์ง€ํ‘œ์—์„œ์˜ ๋ณ€ํ™”๋ฅผ ์‚ฐ๋ž€์ฒด์˜ ์ด๋™๊ณผ ์œ ์ „์ฒด์˜ ์„ฑ์งˆ ๋ณ€ํ™”๊ฐ€ ๊ฒฐํ•ฉ๋œ ์ƒํƒœ๋กœ ๊ฐ€์ •ํ•˜์˜€์œผ๋ฉฐ, ์‹์ƒ์˜ ์ฒด์  ๋ถ€๋ถ„์€ ์‚ฐ๋ž€์ฒด์˜ ์›€์ง์ž„์ด ์ฒด์ ์—์„œ์˜ ์‹œ๊ฐ„ ๊ธด๋ฐ€๋„๋ฅผ ๊ฐ์†Œ์‹œํ‚ค๋Š” ์ฃผ๋œ ์š”์ธ์œผ๋กœ ์ƒ๊ฐํ•˜์˜€๋‹ค. ๋˜ํ•œ ๋‹ค์ค‘ ์‹œ๊ธฐ์˜ SAR ์˜์ƒ์œผ๋กœ๋ถ€ํ„ฐ ๊ณ„์‚ฐ๋œ ๊ธด๋ฐ€๋„๋Š” ์‹œ๊ฐ„ ์ฐจ์ด๊ฐ€ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ๊ธด๋ฐ€๋„๊ฐ€ ๊ฐ์†Œํ•˜๋Š” ํ˜„์ƒ์„ ๊ด€์ธกํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ํŠน์ง•์€ ์‹œ๊ฐ„ ์ฐจ์ด๊ฐ€ ๊ธธ ๊ฒฝ์šฐ ๋งค์šฐ ํฌ๊ฒŒ ๋‚˜ํƒ€๋‚  ์ˆ˜ ์žˆ์ง€๋งŒ, ์ด์ „์˜ ๋ชจ๋ธ์€ ์‹œ๊ฐ„ ์ฐจ์ด๊ฐ€ ์งง์€ ๊ฒฝ์šฐ๋ฅผ ๊ฐ€์ •ํ•˜์˜€๊ธฐ ๋•Œ๋ฌธ์— ๊ทธ ์˜ํ–ฅ์ด ์ค‘์š”ํ•˜์ง€ ์•Š์•˜๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ ๋ณธ ๋ชจ๋ธ์—์„œ๋Š” ๊ธฐ์กด ๋ชจ๋ธ๊ณผ๋Š” ๋‹ค๋ฅด๊ฒŒ ๋‘ ์˜์ƒ์˜ ์‹œ๊ฐ„ ์ฐจ์ด๊ฐ€ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ๊ธด๋ฐ€๋„๊ฐ€ ๊ฐ์†Œํ•˜๋Š” ํ˜„์ƒ์„ ์„ค๋ช…ํ•˜๊ณ ์ž ์ง€์ˆ˜ ํ˜•ํƒœ์˜ ํ•จ์ˆ˜๋ฅผ ์ง€ํ‘œ ์™€ ์ฒด์  ๋ ˆ์ด์–ด์— ๊ฐ๊ฐ ๋„์ž…ํ•˜์˜€๊ณ  ์ด๋ฅผ ์‹œ๊ฐ„ ์ข…์†์  ๊ธด๋ฐ€๋„(temporally-correlated coherence). ์ฆ‰, ์ฒด์ ๊ณผ ์ง€ํ‘œ์˜ ๋‘ ๋ ˆ์ด์–ด ์ƒ์—์„œ ๊ฐ๊ฐ์˜ ์‹œ๊ฐ„์— ๋”ฐ๋ผ์„œ ๊ฐ์†Œํ•˜๊ฒŒ ๋˜๋ฉฐ, ์ด๋Š” ํŠน์ •ํ•œ ์‹œ๊ฐ„ ์ฐจ์ด์—์„œ ๊ธด๋ฐ€๋„๊ฐ€ ํ˜•์„ฑ๋˜์—ˆ์„ ๋•Œ ํŠน๋ณ„ํ•œ ํ˜„์ƒ์ด ์—†์„ ๊ฒฝ์šฐ ์˜ˆ์ธก๋  ์ˆ˜ ์žˆ๋Š” ๊ฐ’์œผ๋กœ ์ƒ๊ฐํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ฐ˜๋ฉด, ์˜ˆ์ธก๋˜๋Š” ๊ฐ’๊ณผ ์‹ค์ œ ๊ด€์ธก๊ฐ’๊ณผ๋Š” ์ฐจ์ด๊ฐ€ ์กด์žฌํ•˜๋ฏ€๋กœ ์ด๋Š” ์‹œ๊ฐ„ ๋…๋ฆฝ์  ๊ธด๋ฐ€๋„(temporally uncorrelated-coherence)๋กœ ํ•ด์„ํ•˜์˜€๋‹ค. ์ฒด์ ๊ณผ ์ง€ํ‘œ์˜ ์‹œ๊ฐ„ ๊ธด๋ฐ€๋„ ๊ฐ์†Œ ํ˜„์ƒ์€ ์ „์ฒด ๊ธด๋ฐ€๋„์— ์˜ํ–ฅ์„ ์ฃผ๊ธฐ ๋•Œ๋ฌธ์— ์ด๋ฅผ ์ง€ํ‘œ์™€ ์ฒด์ ์˜ ๋น„๋ฅผ ๋„์ž…ํ•˜์—ฌ, ๊ฐ๊ฐ์˜ ํšจ๊ณผ๊ฐ€ ์ „์ฒด ๊ธด๋ฐ€๋„์— ์ฃผ๋Š” ์˜ํ–ฅ์— ๋Œ€ํ•˜์—ฌ ์ •๋Ÿ‰ํ™”ํ•˜์˜€๋‹ค. 3์žฅ์—์„œ๋Š” ์ œ์•ˆ๋œ ๋ชจ๋ธ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋‹จ์ผ ํŽธํŒŒ์˜ ๋‹ค์ค‘ ์‹œ๊ธฐ SAR ์˜์ƒ์— ๋Œ€ํ•˜์—ฌ ๊ธด๋ฐ€๋„ ๋ณ€ํ™” ํƒ์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ํ•ด์„์ด ๊ณ ์•ˆ๋˜์—ˆ๋‹ค. ๋ณธ ๋ฐฉ๋ฒ•์€ ์ผ๋ณธ์˜ ํ‚ค๋ฆฌ์‹œ๋งˆ ํ™”์‚ฐ์˜ 2011๋…„ ํ™”์‚ฐ ํญ๋ฐœ๋กœ ๋ฐœ์ƒํ•˜์˜€๋˜ ํ™”์‚ฐ์žฌ๋ฅผ ํƒ์ง€ ํ•˜๋Š” ๊ฒƒ์„ ๋ชฉ์ ์œผ๋กœ ํ•˜์˜€์œผ๋ฉฐ, ๋ณธ ๋ชฉ์ ์„ ์œ„ํ•˜์—ฌ ๋‹จ์ผ ํŽธํŒŒ์˜ ALOS PALSAR ์˜์ƒ์ด ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. SAR ์˜์ƒ์„ ์ด์šฉํ•˜์—ฌ ์‹œ๊ฐ„ ์ฐจ์ด๊ฐ€ ๋‹ค์–‘ํ•˜๊ฒŒ ๊ธด๋ฐ€๋„๊ฐ€ ์ œ์ž‘๋˜์—ˆ๋‹ค. ์‚ฌ์šฉํ•œ multi-looking์€ 32 look์œผ๋กœ ๊ธด๋ฐ€๋„์˜ ๋ฐ”์ด์–ด์Šค๊ฐ€ ๋น„๊ต์  ์ž‘์Œ์„ ์˜๋ฏธํ•œ๋‹ค. ๋˜ํ•œ ํ”ฝ์…€์˜ ๋Œ€๋ถ€๋ถ„์—์„œ์˜ ์—ด์  ๋น„์ƒ๊ด€์„ฑ(thermal decorrelation)์€ ๋ฌด์‹œํ•  ์ˆ˜ ์žˆ์„ ์ •๋„๋กœ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ, ๊ธฐํ•˜ํ•™์  ๋น„์ƒ๊ด€์„ฑ(geometric decorrelation)์€ common-wave spectral filtering์„ ์‚ฌ์šฉํ•˜์—ฌ ๊ฐ์†Œ๋˜์—ˆ๋‹ค. ๋˜ํ•œ ๋Œ€์ƒ ํ™”์‚ฐ์€ ์‹์ƒ์ด ๋ถ„ํฌํ•˜๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์ฒด์  ๋น„์ƒ๊ด€์„ฑ(volume decorrelation)์„ ์ตœ์†Œํ™”ํ•˜์—ฌ์•ผ ํ•  ํ•„์š”์„ฑ์ด ์žˆ๋‹ค. ์ฒด์  ๋น„์ƒ๊ด€์„ฑ์€ ์‹์ƒ์˜ ๋†’์ด, ์‹์ƒ์˜ ์ˆ˜์ง์ ์ธ ๊ตฌ์กฐ, ๋‘ ๋ ˆ์ด๋” ์„ผ์„œ์˜ ๊ธฐ์„ ๊ฑฐ๋ฆฌ(spatial baseline)๋“ฑ์— ์˜ํ•˜์—ฌ ๊ฒฐ์ •๋œ๋‹ค. ์‹์ƒ์˜ ๋ฌผ๋ฆฌ์ ์ธ ํŒŒ๋ผ๋ฏธํ„ฐ๋Š” ์—ฐ๊ตฌ์—์„œ ์ˆ˜์ •ํ•  ์ˆ˜ ์žˆ๋Š” ๋ณ€์ˆ˜๊ฐ€ ์•„๋‹Œ ๋ฐ˜๋ฉด, ๋‹ค์ค‘ ์‹œ๊ธฐ์—์„œ ๋งŒ๋“ค์–ด ์ง„ ์˜์ƒ์€ ๋‹ค์ˆ˜์˜ ๊ธฐ์„ ๊ฑฐ๋ฆฌ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ๊ธฐ์„ ๊ฑฐ๋ฆฌ์— ๋Œ€ํ•œ ์กฐ๊ฑด์ด ์„ค์ •ํ•จ์œผ๋กœ์จ ์ฒด์  ๋น„์ƒ๊ด€์„ฑ์„ ์ตœ์†Œํ™” ํ•  ์ˆ˜ ์žˆ๋‹ค. RVoG ๋ชจ๋ธ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ณ„์‚ฐ๋œ ๊ฒฐ๊ณผ ALOS PALSAR์˜ ๊ฒฝ์šฐ ์•ฝ 1000m์˜ ๊ธฐ์„ ๊ฑฐ๋ฆฌ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์„ ๋•Œ ์ฒด์  ๊ธด๋ฐ€๋„๋Š” ์•ฝ 0.94 ์ด์ƒ์ด ๋จ์„ ์•Œ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ด๋Š” ์ฒด์  ๊ธด๋ฐ€๋„๋ฅผ ๊ณ ๋ คํ•˜์ง€ ์•Š์•„๋„ ๋จ์„ ์˜๋ฏธํ•œ๋‹ค. ์•ž์„œ 2์žฅ์—์„œ ์ œ์•ˆ๋œ ๊ธด๋ฐ€๋„ ๋ชจ๋ธ์˜ ํŒŒ๋ผ๋ฏธํ„ฐ์˜ ์ถ”์ถœ์„ ์œ„ํ•˜์—ฌ ์ž๋ฃŒ๋Š” ํ™”์‚ฐ ํญ๋ฐœ ์ „์˜ ๊ฐ„์„ญ์Œ๊ณผ ํ™”์‚ฐํญ๋ฐœ ์ „ํ›„์˜ ๊ฐ„์„ญ์Œ์˜ ๋‘ ๊ทธ๋ฃน์œผ๋กœ ๋‚˜๋ˆ„์–ด์กŒ๋‹ค. ์šฐ์„  ํ™”์‚ฐ ํญ๋ฐœ ์ด์ „์˜ ๊ธด๋ฐ€๋„์— ๋Œ€ํ•œ ํ•ด์„ ๋ฐ ์ดํ•ด๋ฅผ ์œ„ํ•˜์—ฌ ๊ธด๋ฐ€๋„ ๋ชจ๋ธ์ด ์ ์šฉ๋˜์—ˆ๋‹ค. ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ์—์„œ ์ค‘์š”ํ•œ ๊ฒƒ์€ ๋ชจ๋ธ์— ํฌํ•จ๋˜์–ด ์žˆ๋Š” ํŒŒ๋ผ๋ฏธํ„ฐ์˜ ์ˆ˜์™€ ๊ด€์ธก ๊ฐ’์˜ ์ˆ˜๋กœ, ๊ด€์ธก๊ฐ’์ด ์ถฉ๋ถ„ํ•  ๊ฒฝ์šฐ์—๋งŒ ์ •ํ™•ํ•œ ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ ์ถ”์ถœ์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋‹จ์ผ ํŽธํŒŒ์˜ ๋‹ค์ค‘ ์‹œ๊ธฐ ์˜์ƒ์„ ๋‹ค๋ฃจ๋Š” ๊ฒฝ์šฐ ๋ฏธ์ง€์ˆ˜์˜ ๊ฐœ์ˆ˜๊ฐ€ ๋” ๋งŽ๊ธฐ ๋•Œ๋ฌธ์— ์ •ํ™•ํ•œ ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ ์ถ”์ถœ์€ ์–ด๋ ค์šธ ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ชจ๋ธ์˜ ํŠน์„ฑ์„ ์ด์šฉํ•œ ๊ฐ€์ •์„ ๋ฐ”ํƒ•์œผ๋กœ ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ถ”์ถœํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ ์ถ”์ถœ์˜ ์ฒซ ๋ฒˆ์งธ๋Š” ์ง€ํ‘œ๋Œ€ ์ฒด์ ๋น„ ๋ฐ ์‹œ๊ฐ„ ์ข…์†์  ๊ธด๋ฐ€๋„์˜ ์ถ”์ •์œผ๋กœ ์ด๋Š” ๋‘ ์ง€์ˆ˜ ํ˜•ํƒœ์˜ ๊ณก์„  ์ ํ•ฉ(curve fitting)์œผ๋กœ ์ˆ˜ํ–‰๋˜์—ˆ๋‹ค. ๋ณธ ๊ฒฐ๊ณผ๋กœ๋ถ€ํ„ฐ ์ถ”์ถœ๋œ ๊ฐ ํ”ฝ์…€์˜ ํŠน์ง•์  ์‹œ๊ฐ„ ์ƒ์ˆ˜(characteristic time constant)๋Š” ๊ทธ ํ”ฝ์…€์ด ์‹œ๊ฐ„์˜ ๋ณ€ํ™”์— ๋”ฐ๋ผ ๊ธด๋ฐ€๋„์˜ ์•ˆ์ •์„ฑ์„ ๋ณด์ด๋Š” ์ƒ์ˆ˜๋กœ, ๋†’์„์ˆ˜๋ก ๊ธด ์‹œ๊ฐ„ ์ฐจ์ด์—๋„ ๊ธด๋ฐ€๋„๊ฐ€ ๋†’์Œ์„ ์˜๋ฏธํ•œ๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ์ธ๊ณต์ ์ธ ๊ตฌ์กฐ๋ฌผ์ด๋‚˜, ์‹์ƒ์ด ์—†๋Š” ๋‚˜์ง€(bare soil)์—์„œ ๋†’์€ ๊ฐ’์„ ๋ณด์ž„์„ ์•Œ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๋ฐ˜๋ฉด ์‹์ƒ์ด ์žˆ๋Š” ํ”ฝ์…€์€ ์ƒ๋Œ€์ ์œผ๋กœ ๋‚ฎ์€ ๊ฐ’์„ ๋ณด์˜€๋‹ค. ์ถ”์ •๋œ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์‹œ๊ฐ„ ๋…๋ฆฝ์  ๊ธด๋ฐ€๋„๋ฅผ ์ถ”์ •ํ•˜์˜€์œผ๋‚˜, ์ด ๋•Œ ๋ฏธ์ง€์ˆ˜๊ฐ€ ๊ด€์ธก ๊ฐ’์˜ ๊ฐœ์ˆ˜๋ณด๋‹ค ๋งŽ์œผ๋ฏ€๋กœ ํŒŒ๋ผ๋ฏธํ„ฐ ์ถ”์ •์— ๋ถˆํ™•์‹ค์„ฑ์ด ์กด์žฌํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ง€ํ‘œ์™€ ์ฒด์ ์—์„œ์˜ ์‹œ๊ฐ„ ์ข…์†์  ๊ธด๋ฐ€๋„์˜ ๋น„๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ฐ ํ”ฝ์…€ ๋ฐ ๊ฐ ์‹œ๊ฐ„์ฐจ์ด๋ฅผ ๊ฐ–๋Š” ๊ธด๋ฐ€๋„์—์„œ ์ฒด์ ๊ณผ ์ง€ํ‘œ์˜ ์‹œ๊ฐ„ ๋น„์ƒ๊ด€์„ฑ ์ค‘ ์šฐ์„ธํ•œ ํ˜„์ƒ์„ ํƒ์ง€ํ•˜์—ฌ ์šฐ์„ธํ•˜์ง€ ์•Š์€ ํ˜„์ƒ์„ ๋ฌด์‹œํ•  ์ˆ˜ ์žˆ๋‹ค๊ณ  ๊ฐ€์ •ํ•˜์˜€๋‹ค. ์ฆ‰, ๋งŒ์•ฝ ์ง€ํ‘œ์˜ ์‹œ๊ฐ„ ์ข…์†์  ๊ธด๋ฐ€๋„๊ฐ€ ์ฒด์ ์˜ ์‹œ๊ฐ„ ์ข…์†์  ๊ธด๋ฐ€๋„๋ณด๋‹ค ๊ทธ ํšจ๊ณผ๊ฐ€ ํฌ๋‹ค๋ฉด, ์‹œ๊ฐ„ ๋…๋ฆฝ์  ๊ธด๋ฐ€๋„๊ฐ€ ์ฃผ๋กœ ์ง€ํ‘œ๋กœ๋ถ€ํ„ฐ ๊ธฐ์ธ๋œ๋‹ค๊ณ  ๊ฐ€์ •ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ์‹์ƒ์˜ ๊ธด๋ฐ€๋„๋Š” ์ง€ํ‘œ์˜ ๊ธด๋ฐ€๋„์™€ ์ฒด์ ์˜ ๊ธด๋ฐ€๋„์˜ ์˜ํ–ฅ์ด ๋ณตํ•ฉ์ ์œผ๋กœ ์ž‘์šฉํ•˜์—ฌ ๊ฒฐ์ •๋œ๋‹ค. ์ด ๋•Œ ์ฒด์ ์˜ ๊ธด๋ฐ€๋„์˜ ๋ฐ”๋žŒ์— ์˜ํ•˜์—ฌ์„œ๋„ ์‰ฝ๊ฒŒ ๋ณ€ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์‹œ๊ฐ„์ด ์ง€๋‚จ์— ๋”ฐ๋ผ ๊ทธ ์˜ํ–ฅ์ด ๊ฑฐ์˜ ๋ฌด์‹œํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋œ๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ ์‹œ๊ฐ„ ์ฐจ์ด๊ฐ€ ์งง์„ ๊ฒฝ์šฐ ์‹์ƒ์ด ๊ธด๋ฐ€๋„์— ์ฃผ๋„์ ์œผ๋กœ ์˜ํ–ฅ์„ ์ค„ ์ˆ˜ ์žˆ์ง€๋งŒ, ์‹œ๊ฐ„ ์ฐจ์ด๊ฐ€ ๊ธด ๊ฒฝ์šฐ ์ง€ํ‘œ๊ฐ€ ์šฐ์„ธํ•˜๊ฒŒ ๊ธด๋ฐ€๋„์— ์˜ํ–ฅ์„ ์ค€๋‹ค. ์ด์™€ ๊ฐ™์€ ๊ฐ€์ •์„ ํ†ตํ•˜์—ฌ ์‹œ๊ฐ„ ๋…๋ฆฝ์  ๊ธด๋ฐ€๋„๋ฅผ ์ถ”์ถœํ•˜์˜€๋‹ค. ๊ฐ ํ”ฝ์…€์—์„œ ๊ด€์ฐฐ๋˜๋Š” ๊ธด๋ฐ€๋„์˜ ํ˜„์ƒ์„ ํ†ต๊ณ„์ ์œผ๋กœ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ž์—ฐ ์žฌํ•ด๊ฐ€ ํฌํ•จ๋˜์ง€ ์•Š์€ ์ž๋ฃŒ์˜ ์‹œ๊ฐ„ ์ข…์†์  ํŒŒ๋ผ๋ฏธํ„ฐ์˜ ํžˆ์Šคํ† ๊ทธ๋žจ์„ ์ œ์ž‘ํ•˜์˜€๊ณ , ์ด๋ฅผ ๊ธฐ๋ฐ˜์˜ ์ž์—ฐ ์žฌํ•ด๊ฐ€ ๊ธฐ์กด์— ๋ฐœ์ƒํ•˜์˜€๋˜ ์ž์—ฐ ํ˜„์ƒ์ด ๊ฐ€๋Šฅ์„ฑ์„ ๊ณ„์‚ฐํ•˜์˜€๋‹ค. ๋ฐ˜๋Œ€๋กœ ์ด ์ˆ˜์น˜๋Š” ์ž์—ฐ ํ˜„์ƒ์ด ์•„๋‹ ํ™•๋ฅ ์„ ์˜๋ฏธํ•˜๊ธฐ๋„ ํ•œ๋‹ค. ๊ฒฐ๋ก ์ ์œผ๋กœ ALOS ์ž๋ฃŒ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ํ™”์‚ฐ์žฌ๊ฐ€ ์Œ“์—ฌ์žˆ์„ ํ™•๋ฅ ๋„๋ฅผ ๊ณ„์‚ฐํ•˜์˜€๋‹ค. ๊ฒฐ๊ณผ์˜ ๊ฒ€์ฆ์€ ์‹ค์ œ ํ˜„์žฅ ์กฐ์‚ฌ๋ฅผ ํ†ตํ•˜์—ฌ ํš๋“๋œ ํ™”์‚ฐ์žฌ์˜ ๋‘๊ป˜์™€ ์˜์—ญ ๋ฐ€๋„ (area density)์™€์˜ ๋น„๊ต๋ฅผ ํ†ตํ•˜์—ฌ ์ง„ํ–‰๋˜์—ˆ๋‹ค. ๊ฒ€์ฆ ๊ฒฐ๊ณผ๋Š” ๋‘๊ป˜๋กœ ์•ฝ 5 cm ์ด์ƒ, ์˜์—ญ ๋ฐ€๋„๋กœ ์•ฝ 10 kg/m2 ์ด์ƒ์˜ ํ™”์‚ฐ์žฌ๊ฐ€ ์Œ“์ธ ์ง€์—ญ์—์„œ ์ƒ๊ด€์„ฑ์„ ๋ณด์ž„์„ ํ™•์ธํ•˜์˜€์œผ๋ฉฐ, ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์„ฑ๊ณต์ ์œผ๋กœ ์žฌํ•ด์— ๋Œ€ํ•œ ๋ณ€ํ™”๋ฅผ ํƒ์ง€ํ•˜์˜€์Œ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. 4์žฅ์—์„œ๋Š” ๊ธด๋ฐ€๋„ ๋ชจ๋ธ์„ ์ด์šฉํ•˜์—ฌ ๋‹ค์ค‘ ์‹œ๊ธฐ์˜ ๋‹ค์ค‘ ํŽธํŒŒ SAR ์˜์ƒ์„ ํ™œ์šฉํ•˜์—ฌ ์ž์—ฐ ์žฌํ•ด ํƒ์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ์ ์šฉ๋˜์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋ฅผ ์œ„ํ•˜์—ฌ 2009๋…„๋ถ€ํ„ฐ 2015๋…„๊นŒ์ง€์˜ 15์žฅ์˜ UAVSAR ์ž๋ฃŒ๊ฐ€ ํ™œ์šฉ๋˜์—ˆ์œผ๋ฉฐ, ๋ฏธ๊ตญ ์บ˜๋ฆฌํฌ๋‹ˆ์•„ ์ฃผ์—์„œ ๋ฐœ์ƒํ•œ 2015๋…„์˜ ์‚ฐ๋ถˆ ์ค‘ ํ•˜๋‚˜์ธ Lake fire์— ๋Œ€ํ•˜์—ฌ ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰๋˜์—ˆ๋‹ค. ๊ธด๋ฐ€๋„ ์˜์ƒ์—์„œ ์‚ฐ๋ถˆ์— ์˜ํ•œ ๊ธด๋ฐ€๋„ ๊ฐ์†Œ ํ˜„์ƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ์ง€๋งŒ, ์‹์ƒ ์ง€์—ญ์˜ ์ž์—ฐ ํ˜„์ƒ์— ์˜ํ•œ ๊ธด๋ฐ€๋„ ๊ฐ์†Œ ํ˜„์ƒ๊ณผ ๋ณตํ•ฉ์ ์œผ๋กœ ๋ฐœ์ƒํ•˜์˜€๊ธฐ ๋•Œ๋ฌธ์— ํ•ด์„์— ์–ด๋ ค์›€์ด ์žˆ์—ˆ๋‹ค. ์˜์ƒ์˜ ์ง„ํญ ์˜์ƒ์„ ์ด์šฉํ•œ ์ž์—ฐ ์žฌํ•ด ํƒ์ง€์—๋„ ์‚ฐ๋ถˆ ํƒ์ง€ํ•  ๋งŒํผ ๋ฏผ๊ฐ๋„๊ฐ€ ์ถฉ๋ถ„ํ•˜์ง€ ์•Š์•˜๋‹ค. 3์žฅ๊ณผ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ๋ณธ ์—ฐ๊ตฌ ์ง€์—ญ์—์„œ ๊ธด๋ฐ€๋„๋‚˜ ์ง„ํญ๋งŒ์„ ์‚ฌ์šฉํ•ด์„œ๋Š” ์ •ํ™•ํ•œ ํ”ผํ•ด ์ง€๋„๋ฅผ ๋งŒ๋“ค๊ธฐ ์–ด๋ ค์› ์œผ๋ฉฐ, ๊ทธ๋Ÿฌ๋ฏ€๋กœ ๊ธด๋ฐ€๋„ ๋ชจ๋ธ์„ ์ ์šฉํ•œ ํ”ผํ•ด ํƒ์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ ์šฉํ•  ํ•„์š”์„ฑ์ด ์žˆ์—ˆ๋‹ค. 3์žฅ์—์„œ ์ œ์•ˆ๋œ ๋ชจ๋ธ ํ•ด์„ ๋ฐฉ๋ฒ•๊ณผ๋Š” ์ฐจ์ด์ ์ด ์žˆ๋Š”๋ฐ, ๊ทธ๊ฒƒ์ธ ๋ณธ ์—ฐ๊ตฌ์—์„œ ์‚ฌ์šฉ๋˜๋Š” UAVSAR ์ž๋ฃŒ๊ฐ€ ๋‹ค์ค‘ ํŽธํŒŒ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์œผ๋ฉฐ, ๊ณต๊ฐ„ ๊ธฐ์„  ๊ฑฐ๋ฆฌ๊ฐ€ ๊ฑฐ์˜ 0์— ๊ฐ€๊น๋‹ค๋Š” ํŠน์ง•์ด ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๋‹จ์ผ ํŽธํŒŒ ์ž๋ฃŒ์—์„œ๋Š” ๋งค๊ฐœ ๋ณ€์ˆ˜์˜ ๊ฐ’์ด ๊ด€์ธก๊ฐ’๋ณด๋‹ค ๋งŽ์•˜์ง€๋งŒ, ๋‹ค์ค‘ ํŽธํŒŒ์˜ ๊ฒฝ์šฐ ๊ด€์ธก๊ฐ’์ด ๋” ๋งŽ๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ ์ถ”์ •์— ํ•„์š”ํ–ˆ๋˜ ๊ฐ€์ •์„ ์ค„์ผ ์ˆ˜ ์žˆ๋‹ค๋Š” ์žฅ์ ์ด ์žˆ๋‹ค. ๋˜ํ•œ ๊ณต๊ฐ„ ๊ธฐ์„ ๊ฑฐ๋ฆฌ๊ฐ€ ๊ฑฐ์˜ 0์— ๊ฐ€๊น๋‹ค๋Š” ๊ฒƒ๋„ ์ฒด์  ๋น„์ƒ๊ด€์„ฑ์„ ๋ฌด์‹œํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ ๊ด€์ธก๋œ ๊ธด๋ฐ€๋„๋Š” ๊ฑฐ์˜ ์‹œ๊ฐ„ ๋น„์ƒ๊ด€์„ฑ๊ณผ ๊ด€๋ จ ์žˆ๋‹ค๊ณ  ์ƒ๊ฐํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ถ”์ถœํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ๋ฒ•์€ ํฌ๊ฒŒ 3๊ฐ€์ง€๋กœ ๊ตฌ์„ฑ๋˜์—ˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋กœ๋Š” ์ง€ํ‘œ์™€ ์ฒด์ ์— ๋Œ€ํ•œ ๊ธด๋ฐ€๋„ ์˜ํ–ฅ์„ ๋ถ„๋ฆฌํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์šฐ์„ ์ ์œผ๋กœ ๊ธด๋ฐ€๋„ ์ตœ์ ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ ์šฉํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋‹ค์ค‘ ์‹œ๊ธฐ ์˜์ƒ๋งˆ๋‹ค ๋‹ค๋ฅธ ์ตœ์ ํ™” ๋ฒกํ„ฐ๋ฅผ ์ƒ์ •ํ•˜๋Š” MSM ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ ์šฉํ•˜์˜€๋‹ค. ์ด ๊ณผ์ •์„ ํ†ตํ•˜์—ฌ ๊ด€์ธกํ•  ์ˆ˜ ์žˆ๋Š” ๊ธด๋ฐ€๋„๊ฐ€ ์ตœ๋Œ€์น˜๊ฐ€ ๋˜๊ฒŒ ๋งŒ๋“œ๋Š” ํŽธํŒŒ์™€ ๊ทธ์™€ ์ˆ˜์งํ•˜๋Š” ํŽธํŒŒ๋ฅผ ์ฐพ์„ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๋ชจ๋ธ ํ•ด์„๊ณผ ์—ฐ๊ด€์‹œ์ผฐ์„ ๋•Œ ์ตœ๋Œ€์น˜๊ฐ€ ๋˜๋Š” ๊ธด๋ฐ€๋„๋Š” ์ง€ํ‘œ์˜ ๋ณ€ํ™”์—, ์ตœ์†Œํ™”๋˜๋Š” ๊ธด๋ฐ€๋„๋Š” ์ฒด์ ์˜ ๋ณ€ํ™”์™€ ๊ด€๋ จ๋˜์–ด ์žˆ๋‹ค๊ณ  ํ•ด์„ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋‘ ๋ฒˆ์งธ ๋‹จ๊ณ„์—์„œ๋Š” ์‹œ๊ฐ„ ์ข…์†์  ๊ธด๋ฐ€๋„์— ํ•ด๋‹นํ•˜๋Š” ๋ณ€์ˆ˜์ธ ํŠน์ง•์  ์‹œ๊ฐ„ ์ƒ์ˆ˜๋ฅผ ์ถ”์ถœํ•˜์˜€์œผ๋ฉฐ, ์ง€ํ‘œ๋Œ€ ์ฒด์ ๋น„ ์—ญ์‹œ ๊ณ„์‚ฐํ•˜์˜€๋‹ค. ๋‹จ์ผ ํŽธํŒŒ ์ถ”์ • ๋ฐฉ๋ฒ•๊ณผ ๋‹ค๋ฅด๊ฒŒ ๋‹ค์ค‘ ํŽธํŒŒ ์˜์ƒ์—์„œ๋Š” ๋ชจ๋“  ํŽธํŒŒ์˜ ๊ธด๋ฐ€๋„๋ฅผ ์ด์šฉํ•˜์—ฌ ์ฒด์ ๊ณผ ์ง€ํ‘œ์—์„œ์˜ ์‹œ๊ฐ„ ์ข…์†์  ๊ธด๋ฐ€๋„๋ฅผ ์ถ”์ •ํ•œ๋‹ค. ์„ธ๋ฒˆ์งธ ๋‹จ๊ณ„์—์„œ๋Š” ์ฒด์ ๊ณผ ์ง€ํ‘œ์—์„œ์˜ ์‹œ๊ฐ„ ๋…๋ฆฝ์  ๊ธด๋ฐ€๋„๋ฅผ ๋™์‹œ์— ์ถ”์ •ํ•˜๋ฉฐ 3์žฅ๊ณผ๋Š” ๋‹ค๋ฅธ ๊ฒƒ์€ ์ด ๊ณผ์ •์—์„œ ๊ฐ€์ •์ด ํ•„์š”ํ•˜์ง€ ์•Š๋‹ค๋Š” ๊ฒƒ์ด๋‹ค. ๋ณธ ๊ณผ์ •์„ ํ†ตํ•˜์—ฌ ์ถ”์ •๋œ ํŒŒ๋ผ๋ฏธํ„ฐ ์ค‘ ์‹œ๊ฐ„ ๋…๋ฆฝ์  ๊ธด๋ฐ€๋„๋Š” ์‹œ๊ฐ„ ์ข…์†์  ๊ธด๋ฐ€๋„๋กœ๋ถ€ํ„ฐ ์„ค๋ช…๋˜์ง€ ์•Š๋Š” ๋ถ€๋ถ„์„ ์ถ”๊ฐ€์ ์œผ๋กœ ์„ค๋ช…ํ•˜๋Š” ํŒŒ๋ผ๋ฏธํ„ฐ๋กœ์จ ๊ฐ‘์ž‘์Šค๋Ÿฝ๊ฒŒ ์ผ์–ด๋‚˜๋Š” ๋ณ€ํ™”๋ฅผ ์˜๋ฏธํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ ์ด๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ฐ ํ”ฝ์…€์—์„œ ๊ณผ๊ฑฐ ๋™์•ˆ ๋ฐœ์ƒํ•˜์˜€๋˜ ์ž์—ฐ ํ˜„์ƒ์ด ๊ธด๋ฐ€๋„์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์‚ฐ๋ถˆ์€ ๋น„๊ต์  ๊ฐ•ํ•œ ๊ธด๋ฐ€๋„ ๊ฐ์†Œ๋ฅผ ๋ฐœ์ƒ์‹œํ‚ค๊ธฐ ๋•Œ๋ฌธ์— ํ†ต๊ณ„์ ์ธ ์ ‘๊ทผ์„ ํ†ตํ•˜์—ฌ ํ™•๋ฅ ์ ์ธ ํ”ผํ•ด ๊ฐ€๋Šฅ์„ฑ์„ ๋ถ„์„ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์‚ฐ๋ถˆ์˜ ๊ฒฝ๊ณ„ ๋ถ€๋ถ„์˜ ์ž๋ฃŒ์™€์˜ ์ƒ๋Œ€์ ์ธ ๋น„๊ต๋ฅผ ํ†ตํ•œ ๊ฒ€์ฆ ๊ฒฐ๊ณผ์„ ํ†ตํ•˜์—ฌ ๊ธด๋ฐ€๋„๋งŒ์„ ์ด์šฉํ•˜์—ฌ ํ”ผํ•ด ์ง€์—ญ์„ ์ถ”์ •ํ•˜๋Š” ๋ฐฉ๋ฒ•๋ณด๋‹ค ์˜คํƒ์ง€๋ฅ ์„ ์ค„์ผ ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. 4์žฅ์—์„œ ์‚ฌ์šฉ๋œ ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ ์ถ”์ • ๊ฒฐ๊ณผ์˜ ๊ฒ€์ฆ์„ ์œ„ํ•˜์—ฌ ์ด์ „์˜ ๊ฒ€์ฆ์ด ์ง„ํ–‰๋˜์–ด ์™”๋˜ RMoG ๋ชจ๋ธ๊ณผ ์ƒ๋Œ€ ๋น„๊ต๋ฅผ ์ง„ํ–‰ํ•˜์˜€๋‹ค. RMoG์˜ ์ฒด์ ๊ณผ ์ง€ํ‘œ ๋ถ€๋ถ„์˜ ์‹œ๊ฐ„ ๋น„์ƒ๊ด€์„ฑ ํ•จ์ˆ˜๋Š” ๋ณธ ์—ฐ๊ตฌ์—์„œ ์‚ฌ์šฉ๋œ ๋ชจ๋ธ์˜ ์‹œ๊ฐ„ ์ข…์†์  ๊ธด๋ฐ€๋„์™€ ์‹œ๊ฐ„ ๋…๋ฆฝ์  ๊ธด๋ฐ€๋„์˜ ๊ณฑ์œผ๋กœ ํ‘œํ˜„๋  ์ˆ˜ ์žˆ๋‹ค. ๋น„๊ตํ•œ ๊ฒฐ๊ณผ๋Š” ๋†’์€ ์ƒ๊ด€์„ฑ์„ ๋ณด์ด๋Š” ๊ฒƒ์œผ๋กœ ํ™•์ธ๋˜์—ˆ๋‹ค. ๋˜ํ•œ ๋‹จ์ผ ํŽธํŒŒ์™€ ๋‹ค์ค‘ ํŽธํŒŒ๋ฅผ ์‚ฌ์šฉํ•œ ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ ์ถ”์ • ๊ฒฐ๊ณผ์™€ ์žฌํ•ด ํƒ์ง€ ๊ฒฐ๊ณผ๋„ ๋น„๊ตํ•˜์˜€๋‹ค. ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ ์ถ”์ •์˜ ๊ฒฝ์šฐ, ๋‹จ์ผ ํŽธํŒŒ์—์„œ ์ถ”์ •๋œ ๊ฒฐ๊ณผ๊ฐ€ ๋‹ค์†Œ ์ž‘์Œ์ด ํ™•์ธ๋˜์—ˆ์œผ๋ฉฐ, ์ด๊ฒƒ์€ ๋‹จ์ผ ํŽธํŒŒ(HH)๊ฐ€ ์ง€ํ‘œ์™€ ์ฒด์  ์‚ฌ์ด์˜ ์‚ฐ๋ž€ ์ค‘์‹ฌ์—์„œ ๊ธฐ๋ก๋œ ๊ฒƒ์œผ๋กœ ๊ทธ ์›์ธ์„ ์ถ”์ •ํ•ด๋ณผ ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋Ÿผ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ํ”ผํ•ดํƒ์ง€ ๋ฐฉ๋ฒ•์—์„œ์˜ ์ •ํ™•๋„๋Š” ๋‹ค์ค‘ ํŽธํŒŒ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์— ์šฐ์„ธํ•˜๊ฒŒ ๋‚˜ํƒ€๋‚ฌ์ง€๋งŒ, ๊ฑฐ์˜ ์œ ์‚ฌํ•œ ์ •๋„์˜ ์ •ํ™•๋„๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์Œ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ œ์•ˆ๋œ ํ”ผํ•ด ํƒ์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ž์—ฐ ํ˜„์ƒ์—์„œ ๋น„๋กฏ๋˜๋Š” ๊ธด๋ฐ€๋„ ๊ฐ์†Œ ํ˜„์ƒ์„ ๋ถ„์„ํ•˜์—ฌ ์ž์—ฐ ์žฌํ•ด๋กœ๋ถ€ํ„ฐ ๋ฐœ์ƒํ•˜๋Š” ํ˜„์ƒ์„ ๊ตฌ๋ณ„ํ•˜์—ฌ ํ”ผํ•ด๋กœ ๊ทœ์ •ํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด, ๊ธฐ์กด์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๋ณด๋‹ค ์ •ํ™•๋„๋ฅผ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ ๋‹ค์ค‘ ํŽธํŒŒ ๊ฐ„์„ญ๊ณ„ SAR ์ž๋ฃŒ๋ฅผ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ, ๋‹ค์ค‘ ํŽธํŒŒ์— ๊ธฐ๋ก๋˜์–ด ์žˆ๋Š” ๋‹ค๋ฅธ ์‚ฐ๋ž€ ์ค‘์‹ฌ์—์„œ์˜ ๋ณ€ํ™”๋ฅผ ์ด์šฉํ•˜์—ฌ ์ฒด์  ๋ฐ ์ง€ํ‘œ์—์„œ์˜ ๋ณ€ํ™”๋ฅผ ๋…๋ฆฝ์ ์œผ๋กœ ํ‰๊ฐ€ํ•˜์—ฌ ํ”ผํ•ด๋ฅผ ํƒ์ง€ํ•˜์˜€๋‹ค. ์ด์™€ ๊ฐ™์€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๋‹ค์ˆ˜์˜ ์ž์—ฐ ์žฌํ•ด์— ์ ์šฉ๋  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๊ฐ ํ”ฝ์…€์˜ ๊ธด๋ฐ€๋„ ํŠน์„ฑ์„ ๋ฐ˜์˜ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋‹ค์–‘ํ•œ ์ง€ํ‘œ ํƒ€์ž…์— ์ ์šฉ๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค. ๋˜ํ•œ ๋ฌผ๋ฆฌ์ ์ธ ํ•ด์„์„ ๋ณ‘ํ•ฉํ•˜์—ฌ ํ”ผํ•ด์˜ ์‹ฌ๊ฐ๋„๋ฅผ ์ •๋Ÿ‰ํ™” ํ•  ์ˆ˜ ์žˆ์€ ๊ฐ€๋Šฅ์„ฑ ์—ญ์‹œ ์กด์žฌ ํ•˜๋ฉฐ, ํ–ฅํ›„ ๋ฐœ์‚ฌ๋  ์ธ๊ณต์œ„์„ฑ์˜ ๋ฏธ์…˜์—์„œ๋„ ์ ์šฉ๋  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ๋ณธ ์—ฐ๊ตฌ์˜ ์˜์˜๊ฐ€ ํฌ๋‹ค๊ณ  ํŒ๋‹จํ•  ์ˆ˜ ์žˆ๋‹ค.For rapid response and efficient recovery, the accurate assessment of damaged area caused by the natural disaster is essential. SAR system has been known as a powerful and effective tool for estimating damaged area due to its imaging capability at night and cloudy days. One of the damage assessment methods is based on interferometric coherence generated from two or more SAR images, namely coherent change detection. The interferometric coherence is a very sensitive detector to subtle changes induced by dielectric properties and positional disturbance of scatterers. However, the conventional approaches using the interferometric coherence have several limitations in understanding the damage mechanism caused by natural disasters and providing the accurate spatial information. These limitations come from the complicated mechanism determining the coherence. A number of sources including the sensor geometry, radar parameters, and surface conditions can induce the decorrelation. In particular, the interpretation complexity of the interferometric coherence is severe over the vegetated area, due to the volumetric decorrelation and temporal decorrelation. It is a remaining problem that the decorrelation caused by the natural phenomena such as the wind, rain, and snow can come along the decorrelation caused by natural disaster. Therefore, a new accurate approach needs to be designed in order to interpret the decorrelation sources and discriminate the effect of natural disaster from that of natural phenomena. This research starts from the development of the temporal decorrelation model to interpret the interferometric coherence observed in multi-temporal SAR data. Then, the coherence model is extended to be applied to the damage mapping algorithm for single- and fully-polarimetric SAR data for detecting the damaged area caused by volcanic ash and wildfire. The coherence model is designed so that it explains the coherence behavior observed in the multi-temporal SAR data. The noticeable characteristic is that the interferometric coherence tends to decrease as the time-interval increases. Also, the coherence for multi-layer is determined by the different contributions of each layer. For example, the volume and ground layer can affect the total coherence observed in the forest area. In order to reflect the realistic condition and physically interpret the coherence, the coherence model proposed in this research includes several decorrelation sources such as temporally correlated dielectric changes, temporally uncorrelated dielectric changes and the motions in the two layersi.e. ground and volume layer. According to the proposed model, the coherent behavior of each layer is explained by exponentially decreasing coherence (temporally-correlated coherence), and the difference between the observed coherence and the temporally-correlated coherence is interpreted as the temporally-uncorrelated coherence. The ground-to-volume ratio plays an important role to determine the contributions of temporal decorrelations in ground and volume layer. Suggested model is applied into the coherent change detection for multi-temporal and single-polarized SAR data. The method is evaluated for detection of volcanic ash emitted from Kirishima volcano in 2011 using ALOS PALSAR data. The criterion of the spatial baseline is calculated based on the Random Volume over Ground model to minimize the volumetric decorrelation. The model parameters are extracted under the several assumptions, and then the historical coherence behavior is analyzed using kernel density estimation method. By comparing the changes of model parameters between the reference pairs and event pairs, the probability of surface changes caused by volcanic ash is defined. The in-situ data, which measure the depth and area density of volcanic ash, is compared with the calculated probability maps for determining the threshold and evaluating the performance. The correlation is found over the area where the depth of the volcanic ash is more than 5 cm and the area density is more than 10 kg/m2. The temporal decorrelation model is also used for change detection using multi-temporal and fully-polarimetric interferometric SAR data. By introducing polarimetric and interferometric SAR data, the assumptions used in the method for single-polarized SAR data are reduced and the changes of two layer can be estimated separately. The approach is applied to detect the burnt area caused by the Lake fire, in June 2015 using UAVSAR data. Even though, coherence analysis shows the loss of coherence due to the fire event, the temporal decorrelation caused by the natural changes is mixed with the signal of the event. In order to apply the coherence model and extract the model parameter, here, the three steps are proposedcoherence optimization, temporally-correlated coherence estimation, and temporally-uncorrelated coherence estimation. Then, the extracted model parameters are used for the damage assessment using the probability determination based on the history of natural phenomena. The final generated damage map shows higher performance than the damage mapping method using coherence only. Also, the comparison result with the RMoG model shows high agreement, which implies the extraction of the model parameters is reliable. One of the advantages of the proposed algorithm is that the more accurate delineation of damage area can be expected by isolating the decorrelation caused by the natural disaster from the effect of natural phenomena. Moreover, a distinguishable benefit can be obtained that the changes over ground and volume layers can be assessed separately by utilizing the multi-temporal full-polarimetric SAR data.Chapter 1. Introduction 1 1.1. Brief overview of SAR and its applications 1 1.2. Motivations 5 1.3. Purpose of Research 8 1.4. Outline 10 Chapter 2. Estimation of complex correlation and decorrelation sources 11 2.1. Estimation of complex correlation 11 2.2. Decorrelation sources 14 2.3. Derivation of coherence model assuming two layers for repeat-pass interferometry 35 Chapter 3. Damage mapping using temporal decorrelation model for single-polarized SAR data : A case study for volcanic ash 51 3.1. Description of study area 51 3.2. Data description 55 3.3. Extraction of temporal decorrelation parameters 61 3.4. Probability map generation 68 3.5. Mapping volcanic ash 73 3.6. Discussion 76 Chapter 4.Damage mapping using temporal decorrelation model for multi-temporal and fully-polarized SAR data 78 4.1. Description of Lake Fire and UAVSAR data 79 4.2. Brief analysis of SAR amplitude and interferometric coherence 82 4.3. Damage mapping algorithm using coherence model 89 4.4. Applicable conditions of damage mapping algorithm using coherence model 114 4. 5. Comparison of model inversion results and damage mapping algorithm results 120 4. 6. Discussion and conclusion 129 Chapter 5. Conclusions and Future Perspectives 132 Abstract in Korean 140 Bibliography 147Docto

    Biomass Representation in Synthetic Aperture Radar Interferometry Data Sets

    Get PDF
    This work makes an attempt to explain the origin, features and potential applications of the elevation bias of the synthetic aperture radar interferometry (InSAR) datasets over areas covered by vegetation. The rapid development of radar-based remote sensing methods, such as synthetic aperture radar (SAR) and InSAR, has provided an alternative to the photogrammetry and LiDAR for determining the third dimension of topographic surfaces. The InSAR method has proved to be so effective and productive that it allowed, within eleven days of the space shuttle mission, for acquisition of data to develop a three-dimensional model of almost the entire land surface of our planet. This mission is known as the Shuttle Radar Topography Mission (SRTM). Scientists across the geosciences were able to access the great benefits of uniformity, high resolution and the most precise digital elevation model (DEM) of the Earth like never before for their a wide variety of scientific and practical inquiries. Unfortunately, InSAR elevations misrepresent the surface of the Earth in places where there is substantial vegetation cover. This is a systematic error of unknown, yet limited (by the vertical extension of vegetation) magnitude. Up to now, only a limited number of attempts to model this error source have been made. However, none offer a robust remedy, but rather partial or case-based solutions. More work in this area of research is needed as the number of airborne and space-based InSAR elevation models has been steadily increasing over the last few years, despite strong competition from LiDAR and optical methods. From another perspective, however, this elevation bias, termed here as the โ€œbiomass impenetrabilityโ€, creates a great opportunity to learn about the biomass. This may be achieved due to the fact that the impenetrability can be considered a collective response to a few factors originating in 3D space that encompass the outermost boundaries of vegetation. The biomass, presence in InSAR datasets or simply the biomass impenetrability, is the focus of this research. The report, presented in a sequence of sections, gradually introduces terminology, physical and mathematical fundamentals commonly used in describing the propagation of electromagnetic waves, including the Maxwell equations. The synthetic aperture radar (SAR) and InSAR as active remote sensing methods are summarised. In subsequent steps, the major InSAR data sources and data acquisition systems, past and present, are outlined. Various examples of the InSAR datasets, including the SRTM C- and X-band elevation products and INTERMAP Inc. IFSAR digital terrain/surface models (DTM/DSM), representing diverse test sites in the world are used to demonstrate the presence and/or magnitude of the biomass impenetrability in the context of different types of vegetation โ€“ usually forest. Also, results of investigations carried out by selected researchers on the elevation bias in InSAR datasets and their attempts at mathematical modelling are reviewed. In recent years, a few researchers have suggested that the magnitude of the biomass impenetrability is linked to gaps in the vegetation cover. Based on these hints, a mathematical model of the tree and the forest has been developed. Three types of gaps were identified; gaps in the landscape-scale forest areas (Type 1), e.g. forest fire scares and logging areas; a gap between three trees forming a triangle (Type 2), e.g. depending on the shape of tree crowns; and gaps within a tree itself (Type 3). Experiments have demonstrated that Type 1 gaps follow the power-law density distribution function. One of the most useful features of the power-law distributed phenomena is their scale-independent property. This property was also used to model Type 3 gaps (within the tree crown) by assuming that these gaps follow the same distribution as the Type 1 gaps. A hypothesis was formulated regarding the penetration depth of the radar waves within the canopy. It claims that the depth of penetration is simply related to the quantisation level of the radar backscattered signal. A higher level of bits per pixels allows for capturing weaker signals arriving from the lower levels of the tree crown. Assuming certain generic and simplified shapes of tree crowns including cone, paraboloid, sphere and spherical cap, it was possible to model analytically Type 2 gaps. The Monte Carlo simulation method was used to investigate relationships between the impenetrability and various configurations of a modelled forest. One of the most important findings is that impenetrability is largely explainable by the gaps between trees. A much less important role is played by the penetrability into the crown cover. Another important finding is that the impenetrability strongly correlates with the vegetation density. Using this feature, a method for vegetation density mapping called the mean maximum impenetrability (MMI) method is proposed. Unlike the traditional methods of forest inventories, the MMI method allows for a much more realistic inventory of vegetation cover, because it is able to capture an in situ or current situation on the ground, but not for areas that are nominally classified as a โ€œforest-to-beโ€. The MMI method also allows for the mapping of landscape variation in the forest or vegetation density, which is a novel and exciting feature of the new 3D remote sensing (3DRS) technique. Besides the inventory-type applications, the MMI method can be used as a forest change detection method. For maximum effectiveness of the MMI method, an object-based change detection approach is preferred. A minimum requirement for the MMI method is a time-lapsed reference dataset in the form, for example, of an existing forest map of the area of interest, or a vegetation density map prepared using InSAR datasets. Preliminary tests aimed at finding a degree of correlation between the impenetrability and other types of passive and active remote sensing data sources, including TerraSAR-X, NDVI and PALSAR, proved that the method most sensitive to vegetation density was the Japanese PALSAR - L-band SAR system. Unfortunately, PALSAR backscattered signals become very noisy for impenetrability below 15 m. This means that PALSAR has severe limitations for low loadings of the biomass per unit area. The proposed applications of the InSAR data will remain indispensable wherever cloud cover obscures the sky in a persistent manner, which makes suitable optical data acquisition extremely time-consuming or nearly impossible. A limitation of the MMI method is due to the fact that the impenetrability is calculated using a reference DTM, which must be available beforehand. In many countries around the world, appropriate quality DTMs are still unavailable. A possible solution to this obstacle is to use a DEM that was derived using P-band InSAR elevations or LiDAR. It must be noted, however, that in many cases, two InSAR datasets separated by time of the same area are sufficient for forest change detection or similar applications

    Elevation and Deformation Extraction from TomoSAR

    Get PDF
    3D SAR tomography (TomoSAR) and 4D SAR differential tomography (Diff-TomoSAR) exploit multi-baseline SAR data stacks to provide an essential innovation of SAR Interferometry for many applications, sensing complex scenes with multiple scatterers mapped into the same SAR pixel cell. However, these are still influenced by DEM uncertainty, temporal decorrelation, orbital, tropospheric and ionospheric phase distortion and height blurring. In this thesis, these techniques are explored. As part of this exploration, the systematic procedures for DEM generation, DEM quality assessment, DEM quality improvement and DEM applications are first studied. Besides, this thesis focuses on the whole cycle of systematic methods for 3D & 4D TomoSAR imaging for height and deformation retrieval, from the problem formation phase, through the development of methods to testing on real SAR data. After DEM generation introduction from spaceborne bistatic InSAR (TanDEM-X) and airborne photogrammetry (Bluesky), a new DEM co-registration method with line feature validation (river network line, ridgeline, valley line, crater boundary feature and so on) is developed and demonstrated to assist the study of a wide area DEM data quality. This DEM co-registration method aligns two DEMs irrespective of the linear distortion model, which improves the quality of DEM vertical comparison accuracy significantly and is suitable and helpful for DEM quality assessment. A systematic TomoSAR algorithm and method have been established, tested, analysed and demonstrated for various applications (urban buildings, bridges, dams) to achieve better 3D & 4D tomographic SAR imaging results. These include applying Cosmo-Skymed X band single-polarisation data over the Zipingpu dam, Dujiangyan, Sichuan, China, to map topography; and using ALOS L band data in the San Francisco Bay region to map urban building and bridge. A new ionospheric correction method based on the tile method employing IGS TEC data, a split-spectrum and an ionospheric model via least squares are developed to correct ionospheric distortion to improve the accuracy of 3D & 4D tomographic SAR imaging. Meanwhile, a pixel by pixel orbit baseline estimation method is developed to address the research gaps of baseline estimation for 3D & 4D spaceborne SAR tomography imaging. Moreover, a SAR tomography imaging algorithm and a differential tomography four-dimensional SAR imaging algorithm based on compressive sensing, SAR interferometry phase (InSAR) calibration reference to DEM with DEM error correction, a new phase error calibration and compensation algorithm, based on PS, SVD, PGA, weighted least squares and minimum entropy, are developed to obtain accurate 3D & 4D tomographic SAR imaging results. The new baseline estimation method and consequent TomoSAR processing results showed that an accurate baseline estimation is essential to build up the TomoSAR model. After baseline estimation, phase calibration experiments (via FFT and Capon method) indicate that a phase calibration step is indispensable for TomoSAR imaging, which eventually influences the inversion results. A super-resolution reconstruction CS based study demonstrates X band data with the CS method does not fit for forest reconstruction but works for reconstruction of large civil engineering structures such as dams and urban buildings. Meanwhile, the L band data with FFT, Capon and the CS method are shown to work for the reconstruction of large manmade structures (such as bridges) and urban buildings
    corecore