4,838 research outputs found

    Effects of a proper feature selection on prediction and optimization of drilling rate using intelligent techniques

    Get PDF
    One of the important factors during drilling times is the rate of penetration (ROP), which is controlled based on different variables. Factors affecting different drillings are of paramount importance. In the current research, an attempt was made to better recognize drilling parameters and optimize them based on an optimization algorithm. For this purpose, 618 data sets, including RPM, flushing media, and compressive strength parameters, were measured and collected. After an initial investigation, the compressive strength feature of samples, which is an important parameter from the rocks, was used as a proper criterion for classification. Then using intelligent systems, three different levels of the rock strength and all data were modeled. The results showed that systems which were classified based on compressive strength showed a better performance for ROP assessment due to the proximity of features. Therefore, these three levels were used for classification. A new artificial bee colony algorithm was used to solve this problem. Optimizations were applied to the selected models under different optimization conditions, and optimal states were determined. As determining drilling machine parameters is important, these parameters were determined based on optimal conditions. The obtained results showed that this intelligent system can well improve drilling conditions and increase the ROP value for three strength levels of the rocks. This modeling system can be used in different drilling operations

    Predicting Shear Capacity of RC Beams Strengthened with NSM FRP Using Neural Networks

    Get PDF
    This research aims to predict the shear capacity of NSM FRP beams using the neural network method. The study investigates the key considerations and the necessary analysis for this prediction. NSM FRP beams are reinforced concrete beams that are strengthened with near-surface mounted (NSM) fiber-reinforced polymer (FRP) composites. Accurately predicting their shear capacity is important for ensuring their safety and reliability in real-world applications. The neural network method is a machine learning approach that is increasingly used in engineering analysis and design. The study explores how this method can be used to predict the shear capacity of NSM FRP beams and what factors should be taken into account in this analysis. The research also discusses the analytical approach required for this prediction, highlighting the necessary steps for obtaining accurate results. Overall, this study provides valuable insights into the use of the neural network method for predicting the shear capacity of NSM FRP beams. The findings can help inform future research and practical applications in the field of structural engineering, contributing to the development of safer and more reliable structures

    Performance Based Seismic Assessment of Masonry Infilled Steel Frame Structures

    Get PDF
    Steel framed structures constitute a considerable proportion of residential and commercial structures in earthquake prone regions. In such structures, typically, masonry infills are implemented as walls and partitions. However, in common practice, the influence of the infill panels on the performance and resistance of the building is mostly ignored, not just at the design stage, but also during assessment. Despite the possible strength enhancement that infill panels can bring to the structure for modest earthquakes, they may put the building at high risk of heavy damage if their impact is overlooked, and the interaction not properly designed, as seen in the 2003 Bam earthquake and many other destructive seismic events. Following the performance-based seismic assessment methodology, the dissertation focuses on evaluating the seismic performance of existing masonry infilled steel frames. The seismic response of several building typologies, designed according to common practice, is assessed through nonlinear dynamic methods. Detailed three-dimensional numerical models of selected index buildings are developed, capable of simulating the impact of masonry infill walls along other critical elements such as the beam-column connections, according to available empirical and experimental data. In order to measure the seismic vulnerability, along with possible losses and life cycle costs, analytical fragility functions are derived for the structures, while considering the hazard characteristics of the location under study. The derived fragility functions will help enrich the limited library of existing function dedicated to both bare and infilled steel structures. The outcome is of great importance for insurance valuation, as well as managing disasters and performing strengthening if necessary

    Engineered Wood Products for Construction

    Get PDF
    Wood is a gift from nature. It is a sustainable and renewable bio-composite material that possesses a natural ability to mitigate carbon dioxide. However, due to deforestation and climate change, it has become necessary to develop alternative building and construction materials. Engineered wood products (EWPs) such as parallel strand lumber, laminated veneer lumber, and cross-laminated timber are promising substitutions for conventional lumber products. This book presents a comprehensive overview of EWPs, including information on their classification, design, synthesis, properties, and more. It is divided into two sections: “General Overviews and Applications of EWPs” and “Recent Research and Development of EWPs”. The book is a valuable reference for manufacturers, engineers, architects, builders, researchers, and students in the field of construction

    Model Validation and Simulation

    Get PDF
    The Bauhaus Summer School series provides an international forum for an exchange of methods and skills related to the interaction between different disciplines of modern engineering science. The 2012 civil engineering course was held in August over two weeks at Bauhaus-Universität Weimar. The overall aim was the exchange of research and modern scientific approaches in the field of model validation and simulation between well-known experts acting as lecturers and active students. Besides these educational intentions the social and cultural component of the meeting has been in the focus. 48 graduate and doctoral students from 20 different countries and 22 lecturers from 12 countries attended this summer school. Among other aspects, this activity can be considered successful as it raised the sensitivity towards both the significance of research in civil engineering and the role of intercultural exchange. This volume summarizes and publishes some of the results: abstracts of key note papers presented by the experts and selected student research works. The overview reflects the quality of this summer school. Furthermore the individual contributions confirm that for active students this event has been a research forum and a special opportunity to learn from the experiences of the researchers in terms of methodology and strategies for research implementation in their current work

    Technology and Management for Sustainable Buildings and Infrastructures

    Get PDF
    A total of 30 articles have been published in this special issue, and it consists of 27 research papers, 2 technical notes, and 1 review paper. A total of 104 authors from 9 countries including Korea, Spain, Taiwan, USA, Finland, China, Slovenia, the Netherlands, and Germany participated in writing and submitting very excellent papers that were finally published after the review process had been conducted according to very strict standards. Among the published papers, 13 papers directly addressed words such as sustainable, life cycle assessment (LCA) and CO2, and 17 papers indirectly dealt with energy and CO2 reduction effects. Among the published papers, there are 6 papers dealing with construction technology, but a majority, 24 papers deal with management techniques. The authors of the published papers used various analysis techniques to obtain the suggested solutions for each topic. Listed by key techniques, various techniques such as Analytic Hierarchy Process (AHP), the Taguchi method, machine learning including Artificial Neural Networks (ANNs), Life Cycle Assessment (LCA), regression analysis, Strength–Weakness–Opportunity–Threat (SWOT), system dynamics, simulation and modeling, Building Information Model (BIM) with schedule, and graph and data analysis after experiments and observations are identified

    The Repair of Laterally Damaged Concrete Bridge Girders Using Carbon Fiber Reinforcing Polymers (CFRP)

    Get PDF
    In recent years the use of carbon fiber reinforcing polymers (CFRP) to repair damaged structural components has become more accepted and practiced. However, the current reference for designing FRP systems to repair and strengthen reinforced concrete (RC) and prestressed concrete (PSC) girders has limitations. Similarly, very few resources address solutions for the debonding problem associated with CFRP laminates or the use of CFRP laminates to repair structural members with pre-existing damage. The included experimental program consists of testing both RC and PSC girders with simulated lateral damage and CFRP repairs. A total of 34 RC beams were statically tested under a 4-point loading until failure and had cross-section dimensions of 5” x 10” (14cm x 25.4cm), were 8’ long (2.44m), and were reinforced with either #3 or #4 mild steel rebar. 13 PSC girders having cross-section dimensions representing a half-scaled AASHTO type II shape, were 20’ long (6.1m), and were prestressed with five 7/16” (11.1mm) diameter low-lax 7-wire strands. Ten of the PSC girders were statically loaded until failure under a 4-point testing setup, but 3 PSC girders were dynamically tested under fatigue loading using a 3-point arrangement. Different configurations of CFRP laminates, number and spacing of CFRP transverse U-wraps, and amount of longitudinal CFRP layers are studied. The results present the flexural behavior of all specimen including load-deflection characteristics, strain characteristics, and modes of failure. Ultimately, results are used to recommend important considerations, needed criteria, and proper design procedures for a safe and optimized CFRP repair configuration
    • …
    corecore